首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study presents the results of a comparative life cycle assessment (LCA) on the energy requirements and greenhouse gas (GHG) emission implications of recycling construction and demolition (C&D) rubble and container glass in Cape Town, South Africa. Cape Town is a medium sized city in a developing country with a growing population and a rising middle class, two factors that are resulting in increased generation of solid waste. The City is constrained in terms of landfill space and competing demands for municipal resources.The LCA assessment was based on locally gathered data, supplemented with ecoinvent life cycle inventory data modified to the local context. The results indicated that recycling container glass instead of landfilling can achieve an energy savings of 27% and a GHG emissions savings of 37%, with a net savings still being achieved even if collection practices are varied. The C&D waste results, however, showed net savings only for certain recycling strategies. Recycling C&D waste can avoid up to 90% of the energy and GHG emissions of landfilling when processed and reused onsite but, due to great dependence on haulage distances, a net reduction of energy use and GHG emissions could not be confidently discerned for offsite recycling. It was also found that recycling glass achieves significantly greater savings of energy and emissions than recycling an equivalent mass of C&D waste.The study demonstrated that LCA provides an important tool to inform decisions on supporting recycling activities where resources are limited. It also confirmed other researchers’ observations that strict adherence to the waste management hierarchy will not always result in the best environmental outcome, and that more nuanced analysis is required. The study found that the desirability of recycling from an energy and climate perspective cannot be predicted on the basis of whether such recycling conserves a non-renewable material. However, recycling that replaces a virgin product from an energy-intensive production process appears to be more robustly beneficial than recycling that replaces a product with little embodied energy. Particular caution is needed when applying the waste management hierarchy to the latter situations.  相似文献   

2.
Life cycle assessment, LCA, has become a key methodology to evaluate the environmental performance of products, services and processes and it is considered a powerful tool for decision makers. Waste treatment options are frequently evaluated using LCA methodologies in order to determine the option with the lowest environmental impact. Due to the approximate nature of LCA, where results are highly influenced by the assumptions made in the definition of the system, this methodology has certain non-negligible limitations. Because of that, the use of LCA to assess waste co-incineration in cement kilns is reviewed in this paper, with a special attention to those key inventory results highly dependent on the initial assumptions made. Therefore, the main focus of this paper is the life cycle inventory, LCI, of carbon emissions, primary energy and air emissions. When the focus is made on cement production, a tonne of cement is usually the functional unit. In this case, waste co-incineration has a non-significant role on CO2 emissions from the cement kiln and an important energy efficiency loss can be deduced from the industry performance data, which is rarely taken into account by LCA practitioners. If cement kilns are considered as another waste treatment option, the functional unit is usually 1 t of waste to be treated. In this case, it has been observed that contradictory results may arise depending on the initial assumptions, generating high uncertainty in the results. Air emissions, as heavy metals, are quite relevant when assessing waste co-incineration, as the amount of pollutants in the input are increased. Constant transfer factors are mainly used for heavy metals, but it may not be the correct approach for mercury emissions.  相似文献   

3.
Environmental life cycle assessment (LCA) developed rapidly during the 1990s and has reached a certain level of harmonisation and standardisation. LCA has mainly been developed for analysing material products, but can also be applied to services, e.g. treatment of a particular amount of solid waste. This paper discusses some methodological issues which come into focus when LCAs are applied to solid waste management systems. The following five issues are discussed. (1) Upstream and downstream system boundaries: where is the ‘cradle’ and where is the ‘grave’ in the analysed system? (2) Open-loop recycling allocation: besides taking care of a certain amount of solid waste, many treatment processes also provide additional functions, e.g. energy or materials which are recycled into other products. Two important questions which arise are if an allocation between the different functions should be made (and if so how), or if system boundaries should be expanded to include several functions. (3) Multi-input allocation: in waste treatment processes, different materials and products are usually mixed. In many applications there is a need to allocate environmental interventions from the treatment processes to the different input materials. The question is how this should be done. (4) Time: emissions from landfills will continue for a long time. An important issue to resolve is the length of time emissions from the landfill should be considered. (5) Life cycle impact assessment: are there any aspects of solid waste systems (e.g. the time horizon) that may require specific attention for the impact assessment element of an LCA? Although the discussion centres around LCA it is expected that many of these issues are also relevant for other types of systems analyses.  相似文献   

4.
This paper considers two alternative feedstocks for bioethanol production, both derived from household waste—Refuse Derived Fuel (RDF) and Biodegradable Municipal Waste (BMW). Life Cycle Assessment (LCA) has been carried out to estimate the GHG emissions from bioethanol using these two feedstocks. An integrated waste management system has been considered, taking into account recycling of materials and production of bioethanol in a combined gasification/bio-catalytic process. For the functional unit defined as the ‘total amount of waste treated in the integrated waste management system’, the best option is to produce bioethanol from RDF—this saves up to 196 kg CO2 equiv. per tonne of MSW, compared to the current waste management practice in the UK.However, if the functional unit is defined as ‘MJ of fuel equiv.’ and bioethanol is compared with petrol on an equivalent energy basis, the results show that bioethanol from RDF offers no saving of GHG emissions compared to petrol. For example, for a typical biogenic carbon content in RDF of around 60%, the life cycle GHG emissions from bioethanol are 87 g CO2 equiv./MJ while for petrol they are 85 g CO2 equiv./MJ. On the other hand, bioethanol from BMW offers a significant GHG saving potential over petrol. For a biogenic carbon content of 95%, the life cycle GHG emissions from bioethanol are 6.1 g CO2 equiv./MJ which represents a saving of 92.5% compared to petrol. In comparison, bioethanol from UK wheat saves 28% of GHG while that from Brazilian sugar cane – the best performing bioethanol with respect to GHG emissions – saves 70%. If the biogenic carbon of the BMW feedstock exceeds 97%, the bioethanol system becomes a carbon sequester. For instance, if waste paper with the biogenic carbon content of almost 100% and a calorific value of 18 MJ/kg is converted into bioethanol, a saving of 107% compared to petrol could be achieved. Compared to paper recycling, converting waste paper into bioethanol saves 460 kg CO2 equiv./t waste paper or eight times more than recycling.  相似文献   

5.
We compare calculated greenhouse gas emissions for a North American beef feedlot operation, which includes biogas production by anaerobic digestion with subsequent electricity generation (the AD case), to the emissions for a “business as usual” case, which includes both a feedlot and an equivalent amount of grid-generated electricity. Anaerobic digestion, biogas production and electricity production are the major sources of differences in emissions. Fertilizer production, crop production, manure collection and spreading, as well as the associated transport stages are also considered within the LCA system boundaries; impacts on life cycle emissions from these sources are lower. Running a feedlot and producing electricity using typical grid power plants produces 3,845 kg CO2?eq/MWh while running a feedlot, which generates biogas to produce electricity, produces 2,965 kg CO2?eq/MWh. This savings of 880 kg CO2?eq/MWh arises because the net power generation in the AD case emits about 90% less life cycle GHG emissions compared to grid-average electricity. The high overall emission levels arise due to emissions associated with enteric fermentation in beef cattle as the main source of GHG emissions in both the “business as usual” and the AD cases. It contributed 57% of total emissions for the feedlot /biogas /electricity system and 44% of total emissions for the feedlot /grid electricity system.  相似文献   

6.
Amorphous silicon (a-Si:H)-based solar cells have the lowest ecological impact of photovoltaic (PV) materials. In order to continue to improve the environmental performance of PV manufacturing using proposed industrial symbiosis techniques, this paper performs a life cycle analysis (LCA) on both conventional 1-GW scaled a-Si:H-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Both the energy consumed and greenhouse gas emissions are tracked in the LCA, then silane gas is reused in the manufacturing process rather than standard waste combustion. Using a recycling process that results in a silane loss of only 17% instead of conventional processing that loses 85% silane, results in an energy savings of 81,700 GJ and prevents 4400 tons of CO2 from being released into the atmosphere per year for the single junction plant. Due to the increased use of silane for the relatively thick microcrystalline-Si:H layers in the tandem junction plants, the savings are even more substantial – 290,000 GJ of energy savings and 15.6 million kg of CO2 eq. emission reductions per year. This recycling process reduces the cost of raw silane by 68%, or approximately $22.6 million per year for a 1-GW a-Si:H-based PV production facility and over $79 million per year for tandem manufacturing. The results are discussed and conclusions are drawn about the technical feasibility and environmental benefits of silane recycling in an eco-industrial park centered around a-Si:H-based PV manufacturing plants.  相似文献   

7.
The LCA emissions from four renewable energy routes that convert straw/corn stover into usable energy are examined. The conversion options studied are ethanol by fermentation, syndiesel by oxygen gasification followed by Fischer Tropsch synthesis, and electricity by either direct combustion or biomass integrated gasification and combined cycle (BIGCC). The greenhouse gas (GHG) emissions of these four options are evaluated, drawing on a range of studies, and compared to the conventional technology they would replace in a western North American setting. The net avoided GHG emissions for the four energy conversion processes calculated relative to a “business as usual” case are 830 g CO2e/kWh for direct combustion, 839 g CO2e/kWh for BIGCC, 2,060 g CO2e/L for ethanol production, and 2,440 g CO2e/L for FT synthesis of syndiesel. The largest impact on avoided emissions arises from substitution of biomass for fossil fuel. Relative to this, the impact of emissions from processing of fossil fuel, e.g., refining of oil to produce gasoline or diesel, and processing of biomass to produce electricity or transportation fuels, is minor.  相似文献   

8.
Nowadays, aluminum scrap is traded globally. This has increased the need to analyze the flows of aluminum scrap, as well as to determine the environmental consequences from aluminum recycling. The objective of this work is to determine the greenhouse gases (GHG) emissions of the old scrap collected and sorted for recycling, considering the market interactions. The study focused on Spain as a representative country for Europe. We integrate material flow analysis (MFA) with consequential life cycle assessment (CLCA) in order to determine the most likely destination for the old scrap and the most likely corresponding process affected. Based on this analysis, it is possible to project some scenarios and to quantify the GHG emissions (generated and avoided) associated with old scrap recycling within a global market. From the MFA results, we projected that the Spanish demand for aluminum products will be met mainly with an increase in primary aluminum imports, and the excess of old scrap not used in Spain will be exported in future years, mainly to Asia. Depending on the scenario and on the marginal source of primary aluminum considered, the GHG emission estimates varied between −18,140 kg of CO2 eq. t−1 and −8427 of CO2 eq. t−1 of old scrap collected. More GHG emissions are avoided with an increase in export flows, but the export of old scrap should be considered as the loss of a key resource, and in the long term, it will also affect the semifinished products industry. Mapping the flows of raw materials and waste, as well as quantifying the GHG impacts derived from recycling, has become an essential prerequisite to consistent development from a linear toward a circular economy (CE).  相似文献   

9.
In this study, the environmental impact of recycling portable nickel–cadmium (NiCd) batteries in Sweden is evaluated. A life cycle assessment approach was used to identify life cycle activities with significant impact, the influence of different recycling rates and different time boundaries for emissions of landfilled metals. Excluding the user phase of the battery, 65% of the primary energy is used in the manufacture of batteries while 32% is used in the production of raw materials. Metal emissions from batteries to water originate (96–98%) from landfilling and incineration. The transportation distance for the collection of batteries has no significant influence on energy use and emissions. Batteries manufactured with recycled nickel and cadmium instead of virgin metals have 16% lower primary energy use. Recycled cadmium and nickel metal require 46 and 75% less primary energy, respectively, compared with extraction and refining of virgin metal. Considering an infinite time perspective, the potential metal emissions are 300–400 times greater than during the initial 100 years. From an environmental perspective, the optimum recycling rate for NiCd batteries tends to be close to 100%. It may be difficult to introduce effective incitements to increase the battery collection rate. Cadmium should be used in products that are likely to be collected at the end of their life, otherwise collection and subsequent safe storage in concentrated form seems to offer the best solution to avoid dissipative losses.  相似文献   

10.
Goal of the work is to present a simplified methodology to optimize an integrated solid waste management system. The methodology performs two optimizations, namely: (i) minimization of the total cost of the MSW system and (ii) minimization of the equivalent carbon dioxide emissions (CO2e) generated by the whole system. The methodology is modeled via non-linear mathematical equations, uses 32 decision variables and does not require complex LCA databases. The proposed model optimally allocates eight MSW components (paper, cardboard, plastics, metals, glass, food wastes, yard wastes and other wastes) to four MSW management technologies (incineration, composting, anaerobic digestion, and landfilling) after source separation of recyclables has taken place. The Region of East-Macedonia and Thrace in Greece was selected as a case study. Results showed that there is a trade off between cost and CO2e emissions. Incineration and composting were favored as the principal treatment technologies, while landfilling was always the least desirable management technology under both objective functions. The recycling participation rate significantly affected all optimum scenarios.  相似文献   

11.
Future limitations on the availability of selected resources stress the need for increased material efficiency. In addition, in a climate-constrained world the impact of resource use on greenhouse gas emissions should be minimized. Waste management is key to achieve sustainable resource management. Ways to use resources more efficiently include prevention of waste, reuse of products and materials, and recycling of materials, while incineration and anaerobic digestion may recover part of the embodied energy of materials. This study used iWaste, a simulation model, to investigate the extent to which savings in energy consumption and CO2 emissions can be achieved in the Netherlands through recycling of waste streams versus waste incineration, and to assess the extent to which this potential is reflected in the LAP2 (currently initiated policy). Three waste streams (i.e. household waste, bulky household waste, and construction and demolition waste) and three scenarios compare current policy to scenarios that focus on high-quality recycling (Recycling+) or incineration with increased efficiency (Incineration+). The results show that aiming for more and high-quality recycling can result in emission reductions of 2.3 MtCO2 annually in the Netherlands compared to the reference situation in 2008. The main contributors to this reduction potential are found in optimizing the recycling of plastics (PET, PE and PP), textiles, paper, and organic waste. A scenario assuming a higher energy conversion efficiency of the incinerator treating the residual waste stream, achieves an emission reduction equivalent to only one third (0.7 MtCO2/year) of the reduction achieved in the Recycling+ scenario. Furthermore, the results of the study show that currently initiated policy only partially realizes the full potential identified. A focus on highest quality use of recovered materials is essential to realize the full potential energy and CO2 emission reduction identified for the Netherlands. Detailed economic and technical analyses of high quality recycling are recommended to further evaluate viable integrated waste management policies.  相似文献   

12.
The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers.  相似文献   

13.
Waste wood recovery by thermal treatment with energy recovery or by recycling allows the substitution and conservation of primary resources. Swiss government notes the potential presence of tensions between policies which simultaneously encourage the cascade use of wood, the recycling or the energy recovery by thermal treatment of waste wood. The aim of the present research is to assess the coherence of waste wood management in Switzerland by a quantitative and qualitative approach. First, a material flow analysis allows to model the wood resources and waste wood metabolism over one century. The simulation results of various scenarios of waste wood management establish that the additional impacts of the immediate thermal treatment are less significant for the reduction of CO2eq emissions but more significant for the energy production than its cascade treatments on Swiss territory. Secondly, a documentary analysis examines the determinants of the current waste wood treatments prevailing in Switzerland. Thus, the causes of the strong presence on Swiss territory of the sector of thermal treatment, the export of almost half of waste wood generated and the sub-exploitation of Swiss forest act as barriers or drivers that result in introducing a crowding-out effect where no amount of waste wood is available for recycling in Switzerland. The comparison of the results of the two approaches leads to the conclusion that the current waste wood management is coherent in relation to the various goals of the Swiss federal policies but the waste wood potential for energy production is not fully exploited. The recommendations on the waste wood management and the possibilities to use the model for other case studies are given in the conclusion.  相似文献   

14.
15.
An Eco-balance of a Recycling Plant for Spent Lead–Acid Batteries   总被引:2,自引:0,他引:2  
This study applies Life Cycle Assessment (LCA) methodology to present an eco-balance of a recycling plant that treats spent lead–acid batteries. The recycling plant uses pyrometallurgical treatment to obtain lead from spent batteries. The application of LCA methodology (ISO 14040 series) enabled us to assess the potential environmental impacts arising from the recycling plants operations. Thus, net emissions of greenhouse gases as well as other major environmental consequences were examined and hot spots inside the recycling plant were identified. A sensitivity analysis was also performed on certain variables to evaluate their effect on the LCA study. The LCA of a recycling plant for spent lead–acid batteries presented shows that this methodology allows all of the major environmental consequences associated with lead recycling using the pyrometallurgical process to be examined. The study highlights areas in which environmental improvements are easily achievable by a business, providing a basis for suggestions to minimize the environmental impact of its production phases, improving process and company performance in environmental terms.  相似文献   

16.
食物生产不仅依赖水资源,同时产生大量二氧化碳排放,这种资源环境影响存在于食物系统整个产业链。为促进食物系统节水降碳,本文构建了包含5大类共23种具体食物部门的混合生命周期评价模型,对各类食物系统的完全水资源消耗和二氧化碳排放进行了核算与比较。结果表明:①不同食物的水资源消耗和二氧化碳排放差异明显,动物性食物的平均水资源消耗和二氧化碳排放强度分别为植物性食物的1.9 ~ 15.0倍和1.9 ~ 2.7倍;②食物系统直接和间接水资源消耗占比较为接近,但二氧化碳排放主要源自上游产业链的间接排放,占比高达80.9%;③食物系统间接水资源消耗主要来自农业部门,而间接碳排放主要来自电力生产和供应业、基础化工原料制造业、非金属矿产品行业和交通运输业;④从营养元素供给看,动物性食物提供蛋白质和脂肪的资源环境影响高于植物性食物,蔬菜和主食分别在提供维生素C和碳水化合物上具有最小的环境成本。基于本文结果,食物系统节水应主要提高生产环节用水效率,而降碳则主要依靠上游产业减排,特别是发电和化肥生产等行业的协同节水减碳潜力。同时,本文结果也可为未来基于环境影响制定膳食指南提供数据支撑。  相似文献   

17.
This research utilizes real operating data from a tire plant operating in Central Taiwan to investigate the carbon footprint emissions (CO2e) involved in producing the electric bicycle. The simulation results are based on the PAS 2050 standard using the SimaPro 7.3 software tool. Our results show the total carbon footprint emissions of 1.2-kg tire for the electric bicycle weighing 4.53-kg CO2e, composed of 2.63-kg CO2e from raw tire materials stage, 1.295-kg CO2e from tire manufacturing stage, and 0.605-kg CO2e from tire transport stage. An international certified organization, British Standard Institute (BSI), verified the accuracy of our results as 98.7%. We found that carbon emissions at the raw materials stage were higher than that for the other two stages – manufacturing and transportation. Carbon black was determined as the maximum source of carbon emissions at the raw material stage. To reduce the tire plant carbon emissions, this paper recommends using graphene to replace carbon black. Graphene has been reported by many researches to improve the properties of rubber products. From our simulation results, the carbon footprint emissions of 4.56-kg CO2e of the origin tire plant uses 0.456-kg carbon black to produce 1.2-kg electric bicycle tires. This can be reduced to 4.29 (5.92%), 4.03 (11.62%), 3.75 (11.76%), and 3.49-kg CO2e (23.46%) by using graphene to replace carbon black 25, 50, 75, and 100 wt% respectively. If we focus only on 0.456-kg carbon black producing 1.08-kg CO2e, the reduced carbon footprint will be 0.812 (24.81%), 0.547 (49.35%), 0.28 (74.07%), and 0.0128-kg CO2e (98.81%) by using graphene to replace carbon black 25, 50, 75, and 100 wt% respectively. From our analysis, graphene replacing carbon black can reduce carbon footprint. This has not been published previously and provides a direction for the tire plant to save carbon emissions.  相似文献   

18.
The pulp and paper industry is placed in a unique position as biomass used as feedstock is now in increasingly high demand from the energy sector. Increased demand for biomass increases pressure on the availability of this resource, which might strengthen the need for recycling of paper. In this study, we calculate the energy use and carbon dioxide emissions for paper production from three pulp types. Increased recycling enables an increase in biomass availability and reduces life-cycle energy use and carbon dioxide emissions. Recovered paper as feedstock leads to lowest energy use (22 GJ/t) and CO2 emissions (−1100 kg CO2/t) when biomass not used for paper production is assumed to be converted into bio-energy. Large differences exist between paper grades in e.g. electricity and heat use during production, fibre furnish, filler content and recyclability. We found large variation in energy use over the life-cycle of different grades. However, in all paper grades, life-cycle energy use decreases with increased recycling rates and increased use of recovered fibres. The average life-cycle energy use of the paper mix produced in The Netherlands, where the recycling rate is approximately 75%, is about 14 GJ/t. This equals CO2 savings of about 1 t CO2/t paper if no recycled fibres would be used.  相似文献   

19.
The cement industry is one of the most significant sources of anthropogenic emissions of CO2. It is connected with the specific character of the production processes, during which great quantities of CO2 are produced. Basic actions to reduce CO2 emissions recommended by the European Union's, Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries, include: reduction of fuel consumption, selection of raw materials with low content of organic compounds and fuels with low coal contribution to heating value. All actions connected with the improvement of energy conversion efficiency of the cement production process cause CO2 emissions reduction. The use of at most acceptable by the valid standards amounts of waste as raw materials and additives for cement production, also brings about the reduction of significant part of CO2 emissions. These measures have been and continue to be pursued by the cement factories in Poland. This article describes the evolution of the cement industry in Poland over the period 1998–2008 and the resulting changes in CO2 emissions and explores the drivers for these changes. The sources of CO2 emissions in cement industry have been presented in this article as well as a discussion of potential ways to reduce Polish cement industry emissions even further.  相似文献   

20.
The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing on global warming potentials. The consequence of choosing a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate was studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved biomass, in order to study the importance of the system boundary choices. For recycling, the choice of virgin paper manufacturing data is most important, but the results show that also the impacts from the reprocessing technologies fluctuate greatly. For the overall results the choice of the technology data is of importance when comparing recycling including virgin paper substitution with incineration including energy substitution. Combining an environmentally high or low performing recycling technology with an environmentally high or low performing incineration technology can give quite different results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system to include substitution of fossil fuel energy by production of energy from the saved biomass associated with recycling will give a completely different result. In this case recycling is always more beneficial than incineration, thus increased recycling is desirable. Expanding the system to include forestry was shown to have a minor effect on the results. As assessments are often performed with a set choice of data and a set recycling rate, it is questionable how useful the results from this kind of LCA are for a policy maker. The high significance of the system boundary choices stresses the importance of scientific discussion on how to best address system analysis of recycling, for paper and other recyclable materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号