首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sampling indoor air for potential vapor‐intrusion impacts using current standard 24‐hour sample collection methods may not adequately account for temporal variability and detect contamination best represented by long‐term sampling periods. Henry Schuver of the U.S. Environmental Protection Agency Office of Solid Waste stated at the September 2007 Air & Waste Management Association vapor‐intrusion conference that the US EPA may consider recommending longer‐term vapor sampling to achieve more accurate time‐weighted‐average detections. In November 2007, indoor air at four residences was sampled to measure trichloroethene (TCE) concentrations over short‐ and long‐duration intervals. A carefully designed investigation was conducted consisting of triplicate samplers for three different investigatory methods: dedicated 6‐liter Summa canisters (US EPA Method TO‐15), pump/sorbent tubes (US EPA Method TO‐17), and passive diffusion samplers (MDHS 80). The first two methods collected samples simultaneously for a 24‐hour period, and the third method collected samples for two weeks. Data collected using Methods TO‐15 (canisters) and TO‐17 (tubes) provided reliable short‐duration TCE concentrations that agree with prior 24‐hour sampling events in each of the residences; however, the passive diffusion samplers may provide a more representative time‐weighted measurement. The ratio of measured TCE concentrations between the canisters and tubes are consistent with previous results and as much as 28.0 μg/m3 were measured. A comparison of the sampling procedures, and findings of the three methods used in this study will be presented. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
Two adjacent automotive component manufacturers in Japan had concentrations of trichloroethene (TCE) and perchloroethene (PCE) in soils and groundwater beneath their plants. One of the manufacturers extensively used these solvents in its processes, while the adjacent manufacturer had no documentation of solvent use. The conceptual site model (CSM) initially involved a single source that migrated from one building to under the adjacent building. Further, because low concentrations of daughter products (e.g., cis‐1,2‐dichloroethene; 3.6 to 840 micrograms per liter [μg/L]) were detected in groundwater, the CSM did not consider intrinsic degradation to be a significant fate mechanism. With this interpretation, the initial remedial design involved both source treatment and perimeter groundwater control to prevent offsite migration of the solvents in groundwater. Identifying whether intrinsic degradation was occurring and could be quantified represented a means of eliminating this costly and potentially redundant component. Further, incorporating intrinsic degradation into the remediation design would also allow for a more focused source treatment, resulting in further cost savings. Three rounds of sampling and data interpretation applying compound specific isotope analysis (CSIA) were used to refine the CSM. The first sampling round involved three‐dimensional CSIA (13C, 37Cl, and 2H), while the second two rounds involved 13C only, focusing on degradation over time. For the May 2012 sampling, δ13C for PCE ranged from –31‰ to –29.6 ‰ and for TCE ranged from –30.4‰ to –28.3‰; showing similar values. δ2H for TCE ranged from 581‰ to 629‰, indicating a manufactured TCE rather than that resulting from dehalogenation processes from PCE. However, mixing of manufactured TCE with that resulting from degraded PCE cannot be ruled out. Because of the similar δ13C ratios for PCE and TCE, and 37Cl data for PCE and TCE, fractionation and enrichment factors could not be relied upon. Fractionation patterns were evaluated using graphical methods to trace TCE to the source location to better focus the locations for steam injection. Graphical methods were also used to define the degradation mechanism and from this, incorporate intrinsic degradation processes into the remedial design, eliminating the need for a costly perimeter pump and treat system. ©2015 Wiley Periodicals, Inc.  相似文献   

3.
Despite the installation in the 1980s and 1990s of hydraulic containment systems around known source zones (four slurry walls and ten pump‐and‐treat systems), trichloroethene (TCE) plumes persist in the three uppermost groundwater‐bearing units at the Middlefield‐Ellis‐Whisman (MEW) Superfund Study Area in Mountain View, California. In analyzing TCE data from 15 recovery wells, the observed TCE mass discharge decreased less than an order of magnitude over a 10‐year period despite the removal of an average of 11 pore volumes of affected groundwater. Two groundwater models were applied to long‐term groundwater pump‐and‐treat data from 15 recovery wells to determine if matrix diffusion could explain the long‐term persistence of a TCE plume. The first model assumed that TCE concentrations in the plume are controlled only by advection, dispersion, and retardation (ADR model). The second model used a one‐dimensional diffusion equation in contact with two low‐permeability zones (i.e., upper and lower aquitard) to estimate the potential effects of matrix diffusion of TCE into and out of low‐permeability media in the plume. In all 15 wells, the matrix diffusion model fit the data much better than the ADR model (normalized root mean square error of 0.17 vs. 0.29; r2 of 0.99 vs. 0.19), indicating that matrix diffusion is a likely contributing factor to the persistence of the TCE plume in the non‐source‐capture zones of the MEW Study Area's groundwater‐extraction wells. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
During an environmental assessment of a former fleet vehicle maintenance facility located in Jacksonville, Florida, dissolved trichloroethene (TCE) concentrations exceeding the Florida groundwater standard (3 micrograms per liter) were detected at a depth of 40 feet (12 meters) below land surface (bls). A plume was delineated that measured approximately 600 feet (183 meters) by 150 feet (46 meters), extending across a major road and onto adjacent properties. Shaw Environmental, Inc., which was acquired by CB&I in February 2012, performed pilot tests with in situ oxygen curtain (iSOC), and the injection of Anaerobic Biochem Plus (ABC+), a mixture of lactates, a phosphate buffer, fatty acids, and zero‐valent iron. Based on the pilot‐test results, ABC+ appeared the more effective of the two methods and was selected for full‐scale implementation. In February 2011, Shaw Environmental, Inc. and a subcontractor used direct‐push technology to inject ABC+ in 120 borings. By September 2011, the treatment succeeded in lowering the concentrations of TCE to below the Florida standard in all impacted wells. Subsequent sampling events indicate that TCE concentrations have remained below the standard, but sampling continues for iron, which is decreasing but remains slightly elevated. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Residual dense nonaqueous phase liquid (DNAPL) composed of trichloroethene (TCE) was identified in a deeper interval of an overburden groundwater system at a manufacturing facility located in northern New England. Site hydrostratigraphy is characterized by two laterally continuous and transmissive zones consisting of fully‐saturated fine sand with silt and clay. The primary DNAPL source was identified as a former dry well with secondary contributions from a proximal aboveground TCE storage tank. A single additive‐injection mobilization in 2001 utilizing a food‐grade injectate formulated with waste dairy product and inactive yeast enhanced residual TCE DNAPL destruction in situ by stimulating biotic reductive dechlorination. The baseline TCE concentration was detected up to 97,400 μg/L in the deeper interval of the overburden groundwater system, and enhanced reductive dechlorination (ERD) achieved >99 percent reduction in TCE concentrations in groundwater over nine years with no evidence of sustained rebound. TCE concentrations have remained nondetect below 2.0 μg/L for the last five consecutive sampling rounds between 2013 and 2015. ERD utilizing a food‐grade injectate is a green remediation technology that has destroyed residual DNAPL at the site and achieved similar results at other residual DNAPL sites during both pilot‐ and full‐scale applications. ©2016 Wiley Periodicals, Inc.  相似文献   

6.
Iron‐Osorb® is a solid composite material of swellable organosilica with embedded nanoscale zero‐valent iron that was formulated to extract and dechlorinate solvents in groundwater. The unique feature of the highly porous organosilica is its strong affinity for chlorinated solvents, such as trichloroethylene (TCE), while being impervious to dissolved solids. The swellable matrix is able to release ethane after dechlorination and return to the initial state. Iron‐Osorb® was determined to be highly effective in reducing TCE concentrations in bench‐scale experiments. The material was tested in a series of three pilot scale tests for in situ remediation of TCE in conjunction with the Ohio Environmental Protection Agency at a site in central Ohio. Results of these tests indicate that TCE levels were reduced for a period of time after injection, then leveled out or bounced back, presumably due to depletion of zero‐valent iron. Use of tracer materials and soil corings indicate that Iron‐Osorb® traveled distances of at least 20 feet from the injection point during soil augmentation. The material appears to remain in place once the injection fluid is diluted into the surrounding groundwater. Overall, the technology is promising as a remediation method to treat dilute plumes or create diffuse permeable reactive barriers. Keys to future implementation include developing injection mechanisms that optimize soil distribution of the material and making the system long‐lasting to allow for continual treatment of contaminants emanating from the soil matrix. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Seasonal changes in ambient temperature create vertical temperature gradients in shallow groundwater (less than 15 m). These temperature gradients can affect in‐well flow dynamics that impact samples collected using no‐purge sampling methods. In late winter, the shallower water is colder, resulting in thermally mixed conditions and uniform contaminant concentrations. In late summer, the shallower water is warmer, resulting in thermally stratified conditions and contaminant distributions in the monitoring well more consistent with the distribution in the surrounding aquifer. The importance of seasonal temperature gradients on in‐well mixing was evaluated in two shallow monitoring wells in Houston, Texas. In each of the two wells, four vertically spaced passive diffusion samples collected in late winter showed a less than 1.3x difference in trichloroethene (TCE) concentration between depths, while the same sampling conducted in late summer showed greater than a 100x difference in TCE concentration between depths. A simple analytical model originally developed to predict vertical soil temperature profiles can also be used to predict the occurrence of thermally stratified and thermally mixed conditions in monitoring wells as a function of time and well depth. The results of this analysis and modeling suggest that shallow monitoring wells in most of the United States and Canada can have significantly different vertical concentration profiles within the well over the course of a year due to seasonal vertical temperature gradients. This can induce additional intra‐annual temporal variability on passive no‐purge sampling results from these shallow wells, potentially making it more difficult to discern true trends in the data. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
In June and July 2001, the Massachusetts Department of Environmental Protection (MassDEP) installed a permeable reactive barrier (PRB) to treat a groundwater plume of chlorinated solvents migrating from an electronics manufacturer in Needham, Massachusetts, toward the Town of Wellesley's Rosemary Valley wellfield. The primary contaminant of concern at the site is trichloroethene (TCE), which at the time had a maximum average concentration of approximately 300 micrograms per liter directly upgradient of the PRB. The PRB is composed of a mix of granular zero‐valent iron (ZVI) filings and sand with a pure‐iron thickness design along its length between 0.5 and 1.7 feet. The PRB was designed to intercept the entire overburden plume; a previous study had indicated that the contaminant flux in the bedrock was negligible. Groundwater samples have been collected from monitoring wells upgradient and downgradient of the PRB on a quarterly basis since installation of the PRB. Inorganic parameters, such as oxidation/reduction potential, dissolved oxygen, and pH, are also measured to determine stabilization during the sampling process. Review of the analytical data indicates that the PRB is significantly reducing TCE concentrations along its length. However, in two discrete locations, TCE concentrations show little decrease in the downgradient monitoring wells, particularly in the deep overburden. Data available for review include the organic and inorganic analytical data, slug test results from nearby bedrock and overburden wells, and upgradient and downgradient groundwater‐level information. These data aid in refining the conceptual site model for the PRB, evaluating its performance, and provide clues as to the reasons for the PRB's underperformance in certain locations. © 2008 Wiley Periodicals, Inc.  相似文献   

9.
Vapor intrusion characterization efforts are challenging due to complexities associated with indoor background sources, preferential subsurface migration pathways, indoor and shallow subsurface concentration dynamics, and representativeness limitations associated with manual monitoring and characterization methods. For sites experiencing trichloroethylene (TCE) vapor intrusion, the potential for acute risks poses additional challenges, as the need for rapid response to acute toxicity threshold exceedances is critical in order to minimize health risks and associated liabilities. Currently accepted discrete time‐integrated vapor intrusion monitoring methods that employ passive diffusion–adsorption and canister samplers often do not result in sufficient temporal or spatial sampling resolution in dynamic settings, have a propensity to yield false negative and false positive results, and are not able to prevent receptors from acute exposure risks, as sample processing times exceed exposure durations of concern. Multiple lines of evidence have been advocated for in an attempt to reduce some of these uncertainties. However, implementation of multiple lines of evidence do not afford rapid response capabilities and typically rely on discrete time‐integrated sample collection methods prone to nonrepresentative results due to concentration dynamics. Recent technology innovations have resulted in the deployment of continuous monitoring platforms composed of multiplexed laboratory grade analytical components integrated with quality control features, telemetry, geographical information systems, and interpolation algorithms for automatically generating geospatial time stamped renderings and time‐weighted averages through a cloud‐based data management platform. Automated alerts and responses can be engaged within 1 minute of a threshold exceedance detection. Superior temporal and spatial resolution also results in optimized remediation design and mitigation system performance confirmation. While continuous monitoring has been acknowledged by the regulatory community as a viable option for providing superior results when addressing spatial and temporal dynamics, until very recently, these approaches have been considered impractical due to cost constraints and instrumentation limitations. Recent instrumentation advancements via automation and multiplexing allow for rapid and continuous assessment and response from multiple locations using a single instrument. These advancements have reduced costs to the point where they are now competitive with discrete time‐integrated methods. In order to gain more regulatory and industry support for these viable options, there is an immediate need to perform a realistic cost comparison between currently approved discrete time‐integrated methods and newly fielded continuous monitoring platforms. Regulatory support for continuous monitoring platforms will result in more effectively protecting the public, provide property owners with information sufficient to more accurately address potential liabilities, reduce unnecessary remediation costs for situations where risks are minimal, lead to more effective and surgical remediation strategies, and allow practitioners to most effectively evaluate remediation system performance. To address this need, a series of common monitoring scenarios and associated assumptions were derived and cost comparisons performed. Scenarios included variables such as number of monitoring locations, duration, costs to meet quality control requirements, and number of analyses performed within a given monitoring campaign. Results from this effort suggest that for relatively larger sites where five or more locations will be monitored (e.g., large buildings, multistructure industrial complexes, educational facilities, or shallow groundwater plumes with significant spatial footprints under residential neighborhoods), procurement of continuous monitoring services is often less expensive than implementation of discrete time‐integrated monitoring services. For instance, for a 1‐week monitoring campaign, costs‐per‐analysis for continuous monitoring ranges from approximately 1 to 3 percent of discrete time‐integrated method costs for the scenarios investigated. Over this same one‐week duration, for discrete time‐integrated options, the number of sample analyses equals the number of data collection points (which ranged from 5 to 30 for this effort). In contrast, the number of analyses per week for the continuous monitoring option equals 672, or four analyses per hour. This investigation also suggests that continuous automated monitoring can be cost‐effective for multiple one‐week campaigns on a quarterly or semi‐annual basis in lieu of discrete time‐integrated monitoring options. In addition to cost benefits, automated responses are embedded within the continuous monitoring service and, therefore, provide acute TCE risk‐preventative capabilities that are not possible using discrete time‐integrated passive sampling methods, as the discrete time‐integrated services include analytical efforts that require more time than the exposure duration of concern. ©2016 Wiley Periodicals, Inc.  相似文献   

10.
The United States Environmental Protection Agency is considering recommending longer‐term sampling to achieve more accurate time‐weighted‐average detections for indoor air monitoring of volatile organic chemicals. The purpose of the research presented herein was to compare longer sampling times using passive diffusion samplers to the results from shorter‐term testing periods using sorbent tubes and low‐flow pumps (US EPA Method TO‐17) at great frequency for trichloroethene (TCE) in indoor air. A controlled release of TCE in a large room allowed for over two‐orders‐of‐magnitude daily concentration variability over the course of the two‐week monitoring event. The daily concentration measurements by US EPA Method TO‐17 and the passive diffusion samplers were performed in triplicate and had excellent reproducibility. The results of daily tests were averaged and compared with four passive diffusion devices exposed to indoor air for three, seven, ten, and fourteen days in accordance with ASTM D6196‐02. A specific uptake rate for each of the passive devices at the four different time intervals and the statistical significance of the time‐varying uptake rates were evaluated. The performance of each passive diffusion device was determined using a statistical performance criterion. The average concentration for all of the exposure periods could be reliably predicted using the established uptake rates for two of the four passive devices. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Emulsified zero‐valent iron (EZVI) is a surfactant‐stabilized, biodegradable emulsion that forms droplets consisting of a liquid‐oil membrane surrounding zero‐valent iron (ZVI) particles in water. This article summarizes the results obtained during the first field‐scale deployment of EZVI at NASA's Launch Complex 34 (LC34) located on Cape Canaveral Air Force Station, Florida, in August 2002 and presents the results of recent follow‐on laboratory tests evaluating the mechanisms, which contribute to the performance of the technology. The field‐scale demonstration evaluated the performance of EZVI containing nanoscale zero‐valent iron (NZVI) when applied to dense, nonaqueous phase liquid (DNAPL) trichloroethylene (TCE) in the saturated zone. Results of the field demonstration indicate substantial reductions in TCE soil concentrations (greater than 80 percent) at all but two soil boring locations and significant reductions in TCE groundwater concentrations (e.g., 60 percent to 100 percent) at all depths targeted with EZVI. Laboratory tests conducted in 2005 suggest that both NZVI particles and EZVI containing NZVI can provide significant reductions in TCE mass when used to treat TCE DNAPL in small test reactors. However, EZVI was able to reduce TCE concentrations to lower levels than were obtained with NZVI alone, likely as a result of the combined impact of sequestration of the TCE into the oil phase and degradation of the TCE with the NZVI. © 2006 Wiley Periodicals, Inc.  相似文献   

12.
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
In the 1960s, trichloroethene (TCE) was used at what is now designated as Installation Restoration Program Site 32 Cluster at Vandenberg Air Force Base to flush missile engines prior to launch and perhaps for other degreasing activities, resulting in releases of TCE to groundwater. The TCE plume extends approximately 1 kilometer from the previous launch facilities beyond the southwestern end of the site. To limit further migration of TCE and chlorinated degradation by‐products, an in situ, permeable, reactive bioremediation barrier (biobarrier) was designed as a cost‐effective treatment technology to address the TCE plume emanating from the source area. The biobarrier treatment would involve injecting carbon‐based substrate and microbes to achieve reductive dechlorination of volatile organic compounds, such as TCE. Under reducing conditions and in the presence of certain dechlorinating microorganisms, TCE degrades to nontoxic ethene in groundwater. To support the design of the full‐scale biobarrier, a pilot test was conducted to evaluate site conditions and collect pertinent design data. The pilot test results indicated possible substrate delivery difficulties and a smaller radius of influence than had been estimated, which would be used to determine the final biobarrier well spacing. Based on these results, the full‐scale biobarrier design was modified. In January 2010, the biobarrier was implemented at the toe of the source area by adding a fermentable substrate and a dechlorinating microbial culture to the subsurface via an injection well array that spanned the width of the TCE plume. After the injections, the groundwater pH in the injection wells continued to decrease to a level that could be detrimental to the population of Dehalococcoides in the SDC‐9TM culture. In addition, 7 months postinjection, the injection wells could not be sampled due to fouling. Cleaning was required to restore their functions. Bioassay and polymerase chain reaction analyses were conducted, as well as titration tests, to assess the need for biobarrier amendments in response to the fouling issues and low pH. Additionally, slug tests were performed on three wells to evaluate possible localized differences in hydraulic conductivity within the biobarrier. Based on the test results, the biobarrier was amended with sodium carbonate and inoculated a second time with SDC‐9TM. The aquifer pH was restored, and reductive dechlorination resumed in the treatment zone, evidenced by the reduction in TCE and the increase in degradation products, including ethene. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Contaminants from dry‐cleaning sites, primarily tetrachloroethene (PCE), trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC), have become a major concern because of the limited funds and regulatory programs to address them. Thus, natural attenuation and its effectiveness for these sites needs to be evaluated as it might provide a less costly alternative to other remediation methods. In this research, data from a site in Texas were analyzed and modeled using the Biochlor analytical model to evaluate remediation times using natural attenuation. It was determined that while biodegradation and source decay were occurring at the site, the resulting attenuation rates were not adequate to achieve cleanup in a reasonable time frame without additional source remediation or control strategies. Cleanup times exceeded 100 years for all constituents at the site boundary and 800 years at the source for PCE, assuming cleanup levels of 0.005 mg/L for PCE and TCE and 0.07 mg/L and 0.002 mg/L for cis‐DCE and VC, respectively. © 2005 Wiley Periodicals, Inc.  相似文献   

15.
Remediation of chlorinated solvent DNAPL sites often meets with mixed results. This can be attributed to the diametrically opposed nature of the impacts, where the disparate dissolved‐phase plume is more manageable than the localized, high‐concentration source area. A wide range of technologies are available for downgradient plume management, but the relative mass of contaminants in a DNAPL source area generally requires treatment for such technologies to be effective over the long term. In many cases, the characteristics of DNAPL source zones (e.g., depth, soil heterogeneity, structural limitations) limit the available options. The following describes the successful full‐scale implementation of in situ chemical reduction (ISCR) enhanced bioremediation of a TCE DNAPL source zone. In this demonstration, concentrations of TCE were rapidly reduced to below the maximum contaminant level (MCL) in less than six months following implementation. The results described herein suggest that ISCR‐enhanced bioremediation is a viable remedial alternative for chlorinated solvent source zones. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
The combination of electrokinetic and zero‐valent iron (ZVI) treatments were used to treat soils contaminated with chlorinated solvents, including dense nonaqueous phase liquid (DNAPL), at an active industrial site in Ohio. The remediation systems were installed in tight clay soils under truck lots and entrances to loading docks without interruption to facility production. The electrokinetic system, called LasagnaTM, uses a direct current electrical field to mobilize contaminant via electroosmosis and soil heating. The contaminants are intercepted and reduced in situ using treatment zones containing ZVI. In moderately contaminated soils around the LasagnaTM‐treated source areas, a grid of ZVI filled boreholes were emplaced to passively treat residual contamination in decades instead of centuries. The remediation systems were installed below grade and did not interfere with truck traffic during the installation and three years of operation. The LasagnaTM systems removed 80 percent of the trichloroethylene (TCE) mass while the passive ZVI borings system has reduced the TCE by 40 percent. The remediation goals have been met and the site is now in monitoring‐only mode as natural attenuation takes over. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

18.
An Interstate Technology and Regulatory Council (ITRC) forum was recently held that focused on case studies in which bioremediation of dense nonaqueous‐phase liquids (DNAPLs) was performed. This first case study, the Test Area North (TAN) site of the Idaho National Engineering and Environmental Laboratory, involves a trichloroethene (TCE) residual source area in a deep, fractured basalt aquifer that has been undergoing enhanced bioremediation since January 1999. Complete dechlorination from TCE to ethene was documented within nine months of operation, and sodium lactate injections were shown to enhance TCE mass transfer from the residual source. Since that time, optimization of injection strategies has maintained efficient dechlorination while demonstrating accelerated cleanup at a lower cost by changing to a whey powder amendment that solubilizes DNAPL. © 2006 Wiley Periodicals, Inc.  相似文献   

19.
Tetrachloroethene (PCE)‐ and trichloroethene (TCE)‐impacted sites pose significant challenges even when site characterization activities indicate that biodegradation has occurred naturally. Although site‐specific, regulatory, and economic factors play roles in the remedy‐selection process, the application of molecular biological tools to the bioremediation field has streamlined the assessment of remedial alternatives and allowed for detailed evaluation of the chosen remedial technology. The case study described here was performed at a PCE‐impacted site at which reductive dechlorination of PCE and TCE had led to accumulation of cis‐dichlorethene (cis‐DCE) with concentrations ranging from approximately 10 to 100 mg/L. Bio‐Trap® samplers and quantitative polymerase chain reaction (qPCR) enumeration of Dehalococcoides spp. were used to evaluate three remedial options: monitored natural attenuation, biostimulation with HRC®, and biostimulation with HRC‐S®. Dehalococcoides populations in HRC‐S‐amended Bio‐Traps deployed in impacted wells were on the order of 103 to 104 cells/bead but were below detection limits in most unamended and HRC‐amended Bio‐Traps. Thus the in situ Bio‐Trap study identified biostimulation with HRC‐S as the recommended approach, which was further evaluated with a pilot study. After the pilot HRC‐S injection, Dehalococcoides populations increased to 106 to 107 cells/bead, and concentrations of cis‐DCE and vinyl chloride decreased with concurrent ethene production. Based on these results, a full‐scale HRC‐S injection was designed and implemented at the site. As with the pilot study, full‐scale HRC‐S injection promoted growth of Dehalococcoides spp. and stimulated reductive dechlorination of the daughter products cis‐DCE and vinyl chloride. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
A first‐of‐its‐kind wetland restoration project was completed in October 2000 to treat trichloroethene‐(TCE‐)impacted groundwater from a former manufacturing facility prior to discharge into a highly valued recreational surface water body in the upper Midwest. This article summarizes the design, construction, operation, and effectiveness of the restored wetland. The groundwater‐surface water discharge zone at the site was restored as a wetland to improve the natural degradation of TCE and subsequent degradation by‐products. For the past 11 years, the treatment wetland performance was evaluated by monitoring the wetland vegetation, wetland hydraulics, and water chemistry. Water quality data have been used to assess the wetland geochemistry, TCE and TCE‐degradation by‐product concentrations within the wetland, and the surface water quality immediately downgradient of the wetland. The treatment wetland has been performing according to design, with TCE and TCE‐degradation by‐products not exceeding surface water criteria. The monitoring results show that TCE and TCE‐degradation by‐products are entering the treatment wetland via natural hydraulic gradients and that the geochemistry of the wetland supports both reductive dechlorination (anaerobic degradation) and cometabolic degradation (aerobic degradation) of TCE and TCE‐degradation by‐products: cis‐ and trans‐1,2‐dichloroethene and vinyl chloride. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号