首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil erosion and nutrient losses are great concerns following forest wildfires. Biosolids application might enhance revegetation efforts while reducing soil erodibility. Consequently, we applied Denver Metro Wastewater District composted biosolids at rates of 0, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to increase plant cover and growth. Soils were classified as Ustorthents, Ustochrepts, and Haploborols. Simulated rainfall was applied for 30 min at a rate of 100 mm h(-1) to 3- x 10-m paired plots. Biosolids application rates did not significantly affect mean total runoff (p < 0.05). Sediment concentrations were significantly greater (p < 0.05) from the control plots compared with the plots that had received the 80 Mg biosolids ha(-1) rate. Biosolids application rate had mixed effects on water-quality constituents; however, concentrations of all runoff constituents for all treatment rates were below levels recommended for drinking water standards, except Pb. Biosolids application to this site increased plant cover, which should provide erosion control.  相似文献   

2.
This research combines laboratory and field studies with computer simulation to characterize the amount of plant-available nitrogen (PAN) released when municipal biosolids are land-applied to agronomic crops. In the laboratory studies, biosolids were incubated in or on soil from the land application sites. Mean biosolids total C, organic N, and C to N ratio were 292 g kg(-1), 41.7 g kg(-1), and 7.5, respectively. Based on CO2 evolution at 25 degrees C and optimum soil moisture, 27 of the 37 biosolids-soil combinations had two decomposition phases. The mean rapid and slow fraction rate constants were 0.021 and 0.0015 d(-1), respectively, and the rapid fraction contained 23% of the total C assuming sequential decomposition. Where only one decomposition phase existed, the mean first order rate constant was 0.0046 d(-1). The mean rate constant for biosolids stored in lagoons for an extended time was 0.00097 d(-1). The only treatment process that was related to biosolids treatment was stabilization by storage in a lagoon. Biosolids addition rates (dry basis) ranged from 1.3 to 33.8 Mg ha(-1) with a mean value of 10.6 Mg ha(-1). A relationship between fertilizer N rate and crop response was used to estimate observed PAN at each site. Mean observed PAN during the growing season was 18.9 kg N Mg(-1) or 37% of the biosolids total N. Observed PAN was linearly related to biosolids total N. Predicted PAN using the computer model Decomposition, actual growing-season weather, actual analytical data, and laboratory decomposition kinetics compared well with observed PAN. The mean computer model prediction of growing-season PAN was 19.2 kg N Mg(-1) and the slope of the regression between predicted and observed PAN was not significantly different from unity. Predicted PAN obtained using mean decomposition kinetics was related to predicted PAN using actual decomposition kinetics suggesting that mean rate constants, actual weather, and actual analytical data could be used in estimation of PAN. There was a linear relationship between predicted N mineralization for the growing season and for the first year. For this study, the mean values for the growing season and year were 27 and 37% of the organic N, respectively.  相似文献   

3.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature.  相似文献   

4.
Debate exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared with soils amended with inorganic salts. To test the importance of these two phases, adsorption isotherms were developed for soil samples (nine biosolids-amended soils and their five companion controls) and two biosolids samples from five experimental sites with documented histories of biosolids application. Subsamples were treated with 0.7 M NaClO to remove organic carbon. Cadmium nitrate was added to both moist soil samples and their soil inorganic fractions (SIF) in a 0.01 M Ca(NO3)2 solution at three pH levels (6.5, 5.5, and 4.5), and equilibrated at 22 +/- 1 degrees C for at least 48 h. Isotherms of Cd adsorption for biosolids-amended soil were intermediate to the control soil and biosolids. Decreasing pH did not remove the difference between these isotherms, although adsorption of Cd decreased with decreasing pH level. Organic matter removal reduced Cd adsorption on all soils but had little influence on the observed difference between biosolids-amended and control soils. Thus, increased adsorption associated with biosolids application was not limited to the organic matter addition from biosolids; rather, the biosolids application also altered the adsorptive properties of the SIF. The greater affinity of the inorganic fraction of biosolids-amended soils to adsorb Cd suggests that the increased retention of Cd on biosolids-amended soils is independent of the added organic matter and of a persistent nature.  相似文献   

5.
Dormant-season application of biosolids increases desert grass production more than growing season application in the first growing season after application. Differential patterns of NO3-N (plant available N) release following seasonal biosolids application may explain this response. Experiments were conducted to determine soil nitrate nitrogen dynamics following application of biosolids during two seasons in a tobosagrass [Hilaria mutica (Buckl.) Benth.] Chihuahuan Desert grassland. Biosolids were applied either in the dormant (early April) or growing (early July) season at 0, 18, or 34 dry Mg ha(-1). A polyester-nylon mulch was also applied to serve as a control that approximated the same physical effects on the soil surface as the biosolids but without any chemical effects. Supplemental irrigation was applied to half of the plots. Soil NO3-N was measured at two depths (0-5 and 5-15 cm) underneath biosolids (or mulch) and in interspace positions relative to surface location of biosolids (or mulch). Dormant-season biosolids application significantly increased soil NO3-N during the first growing season, and also increased soil NO3-N throughout the first growing season compared to growing-season biosolids application in a year of higher-than-average spring precipitation. In a year of lower-than-average spring precipitation, season of application did not affect soil NO3-N. Soil NO3-N was higher at both biosolids rates for both seasons of application than in the control treatment. Biosolids increased soil NO3-N compared to the inert mulch. Irrigation did not significantly affect soil NO3-N. Soil NO3-N was not significantly different underneath biosolids and in interspace positions. Surface soil NO3-N was higher during the first year of biosolids application, and subsurface soil NO3-N increased during the second year. Results showed that biosolids rate and season of application affected soil NO3-N measured during the growing season. Under dry spring-normal summer precipitation conditions, season of application did not affect soil NO3-N; in contrast, dormant season application increased soil NO3-N more than growing season application under wet spring-dry summer conditions.  相似文献   

6.
Municipal biosolids are typically not used on the steepest of forested slopes in the U.S. Pacific Northwest. The primary concern in using biosolids on steep slopes is movement of biosolids particles and soluble nutrients to surface waters during runoff events. We examined the pattern and extent of P and N runoff from a perennial stream draining a small, forested 21.4-ha watershed in western Washington before and after biosolids application. In this study, we applied biosolids at a rate of 13.5 Mg ha(-1) (700 kg N ha(-1) and 500 kg P ha(-1)) to 40% of the watershed following nearly 1.5 years of pre-application water sampling and 1.5 years thereafter. There was no evidence of direct runoff of P or N from biosolids into surface water. Elevated surface water discharge did not change the concentration of PO4-P, biologically available phosphorus (BAP), bioavailable particulate phosphorus (BPP), or total P nor did it affect the concentration-discharge relationship. Some instances of total P concentrations exceeding the USEPA surface water standard of 0.1 mg L(-1) were observed following biosolids application. However, total P in 27 Creek was predominately in particulate form and not labile, suggesting that detritus moving into the main creek channel and ephemeral drainage courses may be the principal P source. Ammonium N concentrations in runoff water were consistent before and after biosolids application, ranging from below detection limits (0.01 mg L(-1)) to 0.1 mg L(-1); no concentration-discharge relationship existed. Biosolids application changed the 27 Creek concentration-discharge relationship for NO3(-)-N. Before application, no relationship existed. Beginning nine months after biosolids application, increases in discharge were positively related to increases in NO3(-)-N concentrations. Nitrate concentrations in runoff following biosolids application were approximately 10 times less than the USEPA drinking water standard of 10 mg L(-1).  相似文献   

7.
In December 2003, the USEPA released an amended list of 15 "candidate pollutants for exposure and hazard screening" with regard to biosolids land application, including Ba. Therefore, we decided to monitor soil Ba concentrations from a dryland wheat (Triticum aestivum L.)-fallow agroecosystem experiment. This experiment received 10 biennial biosolids applications (1982-2003) at rates from 0 to 26.8 dry Mg ha(-1) per application year. The study was conducted on a Platner loam (Aridic Paleustoll), approximately 30 km east of Brighton, CO. Total soil Ba, as measured by 4 M HNO(3), increased with increasing biosolids application rate. In the soil-extraction data from 1988 to 2003, however, we observed significant (P < 0.10) linear or exponential declines in ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) extractable Ba concentrations as a function of increasing biosolids application rates. This was observed in 6 of 7 and 3 of 7 yr for the 0- to 20- and 20- to 60-cm soil depths, respectively. Results suggest that while total soil Ba increased as a result of biosolids application with time, the mineral form of Ba was present in forms not extractable with AB-DTPA. Scanning electron microscopy using energy dispersive spectroscopy verified soil Ba-S compounds in the soil surface, probably BaSO(4). Wet chemistry sequential extraction suggested BaCO(3) precipitation was increasing in the soil subsurface. Our research showed that biosolids application may increase total soil Ba, but soil Ba precipitates are insoluble and should not be an environmental concern in similar soils under similar climatic and management conditions.  相似文献   

8.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

9.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

10.
Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.  相似文献   

11.
Detectable levels of dioxins have been reported in biosolids, but very little information is available on the effect of long-term application of biosolids on dioxins accumulation in soil and uptake by plants. We analyzed dioxins in soil and corn tissue samples from field plots after 30 continuous applications of biosolids at 0 (Control), 16.8, and 67.2 Mg biosolids ha(-1) yr(-1) resulting in 0, 504, and 2016 Mg ha(-1) cumulative loadings of biosolids, respectively. The levels of dioxins in soil were only 79.9, 115.5, and 247.5 ng toxic equivalents (TEQs) kg(-1) in the 0, 504, and 2016 Mg biosolids ha(-1) plots, respectively. Dioxins were not detected in the corn grain, and only trace levels (6.8-7.5 ng TEQs kg(-1)) were found in the corn stover; however, these values were not statistically different between control and biosolids-amended soils. These observations suggest that although long-term application of biosolids may increase the levels of dioxins in soil, it does not affect dioxins uptake by corn.  相似文献   

12.
To evaluate the importance of both the inorganic and organic fractions in biosolids on Cd chemistry, a series of Cd sorption and desorption batch experiments (at pH 5.5) were conducted on different fractions of soils from a long-term field experimental site. The slope of the Cd sorption isotherm increased with rate of biosolids and was different for the different biosolids. Removal of organic carbon (OC) reduced the slope of the Cd sorption isotherm but did not account for the observed differences between biosolids-amended soils and a control soil, indicating that the increased adsorption associated with biosolids application was not limited to the increased OC from the addition of biosolids. Removal of both OC and Fe/Mn further reduced the slopes of Cd sorption isotherms and the sorption isotherm of the biosolids-amended soil was the same as that of the control, indicating both OC and Fe/Mn fractions added by the biosolids were important to the increased sorption observed for the biosolids-amended soil samples. Desorption experiments failed to remove from 60 to 90% of the sorbed Cd. This "apparent hysteresis" was higher for biosolids-amended soil than the control soil. Removal of both OC and Fe/Mn fractions was more effective in removing the observed differences between the biosolids-amended soil and the control than either alone. Results show that Cd added to biosolids-amended soil behaves differently than Cd added to soils without biosolids and support the hypothesis that the addition of Fe and Mn in the biosolids increased the retention of Cd in biosolids-amended soils.  相似文献   

13.
Mine reclamation with biosolids increases revegetation success but nutrient addition well in excess of vegetation requirements has the potential to increase leaching of NO3 and other biosolids constituents. A 3-yr water quality monitoring study was conducted on a Pennsylvania mine site reclaimed with biosolids applied at the maximum permitted and standard loading rate of 134 Mg ha(-1). Zero-tension lysimeters were installed at 1-m depth 1 yr before reclamation: three in the biosolids application area, one in a control area (no biosolids). Before reclamation, all water samples had pH in the range 4.7 to 6.2, acidity < 20 mg L(-1), and very low levels of all other measured parameters. Following reclamation, percolate water in the biosolids-treated area had lower pH and greater acidity than the control area. Acidity was greatest during the first winter following biosolids application, decreased during the spring, and showed a similar pattern but with much smaller concentrations the second year. Maximum first- year leachate NO3 concentrations were approximately 300 mg L(-1) and half as large the second year. Estimated inorganic N leaching loss during the first 2 yr after biosolids application was 2327 kg N ha(-1). Aluminum, Mn, Cu, Ni, Pb, and Zn followed similar leaching patterns as did acidity, and their mobilization appeared to be the result of the increased acidity. These results indicate that large applications of low-C/N-ratio biosolids could negatively impact area water quality and that biosolids reclamation practices should be modified to reduce this possibility.  相似文献   

14.
From 1974 to 1984, 543 Mg ha(-1) of biosolids were applied to portions of a land-reclamation site in Fulton County, IL. Soil organic C increased to 5.1% then decreased significantly (p < 0.01) to 3.8% following cessation of biosolids applications (1985-1997). Metal concentrations in amended soils (1995-1997) were not significantly different (p > 0.05) (Ni and Zn) or were significantly lower (p < 0.05) (6.4% for Cd and 8.4% for Cu) than concentrations from 1985-1987. For the same biosolids-amended fields, metal concentrations in corn (Zea mays L.) either remained the same (p > 0.05, grain Cu and Zn) or decreased (p < 0.05, grain Cd and Ni, leaf Cd, Cu, Ni, Zn) for plants grown in 1995-1997 compared with plants grown immediately following termination of biosolids applications (1985-1987). Biosolids application increased (p < 0.05) Cd and Zn concentrations in grain compared with unamended fields (0.01 to 0.10 mg kg(-1) for Cd and 23 to 28 mg kg(-1) for Zn) but had no effect (p > 0.05) on grain Ni concentrations. Biosolids reduced (p < 0.05) Cu concentration in grain compared with grain from unamended fields (1.9 to 1.5 mg kg(-1)). Biosolids increased (p < 0.05) Cd, Ni, and Zn concentrations in leaves compared with unamended fields (0.3 to 5.6 mg kg(-1) for Cd, 0.2 to 0.5 mg kg(-1) for Ni, and 32 to 87 mg kg(-1) for Zn), but had no significant effect (p > 0.05) on leaf Cu concentrations. Based on results from this field study, USEPA's Part 503 risk model overpredicted transfer of these metals from biosolids-amended soil to corn.  相似文献   

15.
The soil solid phase components most responsible for P sorption in Florida soils are Fe and Al oxides. Thus, we hypothesized that land application of biosolids would significantly increase a soil's P retention by increasing its content of P-sorbing solids, especially when biosolids with high Fe and Al concentrations are applied to soils that sorb P poorly. Biosolids effects were quantified by a series of single-point isotherms on soils from two field studies sampled for up to 4 yr after initial biosolids application. Biosolids additions had little effect on P retention in a soil with abundant oxalate-extractable Fe and Al and a correspondingly large native P-sorbing capacity. However, biosolids significantly increased P retention in a soil with low oxalate-extractable Fe and Al content and low native P-sorbing capacity. Biosolids effects on P retention lasted 1 to 3 yr after application, depending on biosolids source and rate of application, and generally mimicked persistence of increased extractable Fe and Al concentrations in the poorly P-sorbing soil. Disappearance of added Fe and Al (and, hence, P retention capacity) from the surface horizons over time was relatively rapid, perhaps due to abundant organic acid production associated with biosolids degradation. Phosphorus in biosolids containing (or tailored to contain) abundant Fe and/or Al can be expected to behave as a slowly available P source, and to be less subject to leaching losses than completely soluble P sources.  相似文献   

16.
The application of biosolids (sewage sludge) to agricultural soils provides P in excess of crop needs when applied to meet the N needs of most agronomic crops. These overapplications can result in the buildup of P in soils to values well above those needed for optimum crop yields and also may increase risk of P losses to surface and ground waters. Because of concerns regarding the influence of P on water quality in the USA, many state and federal agencies now recommend or require P-based nutrient management plans for animal manures. Similar actions are now under consideration for the land application of biosolids. We reviewed the literature on this subject and conducted a national survey to determine if states had restrictions on P levels in biosolids-amended soils. The literature review indicates that while the current N-based approach to biosolids management does result in increases of soil P, some properties of biosolids may mitigate the environmental risk to water quality associated with land application of P in biosolids. Results of the survey showed that 24 states have regulations or guidelines that can be imposed to restrict land application of biosolids based on P. Many of these states use numerical thresholds for P in biosolids-amended soils that are based on soil test phosphorus (STP) values that are much greater than the values considered to be agronomically beneficial. We suggest there is the need for a comprehensive environmental risk assessment of biosolids P. If risk assessment suggests the need for regulation of biosolids application, we suggest regulations be based on the P Site Index (PSI), which is the method being used by most states for animal manure management.  相似文献   

17.
A range of soil amendments including diammonium phosphate fertilizer (DAP), municipal biosolids (BS), biosolids compost, and Al- and Fe-based water treatment residuals were tested on Pb-, Zn-, and Cd-contaminated yard soils and tailings at the Tar Creek NPL site in Oklahoma to determine if amendments could restore a vegetative cover and reduce metal availability in situ. For the yard soils, all amendments reduced bioaccessible (assessed with a physiologic-based extraction method) Pb, with reductions ranging from 35% (BS+Al, DAP 0.5%, DAP+Compost+Al) to 57% (Compost+Al). Plant Zn (Cynadon dactylon L.) and NH4 NO3-extractable Cd and Zn were also reduced by a number of amendments. For the tailings, all amendments excluding BS reduced bioaccessible Pb, with the largest reductions observed in the DAP 3% and DAP3%+BS treatments (75 and 84%). Plant growth was suppressed in all treatments that contained DAP for the first season, with the highest growth in the treatments that included compost and biosolids. In the second year, growth was vigorous for all treatments. Plant Zn and Cd and extractable metal concentration were also reduced. A number of treatments were identified that reduced bioaccessible Pb and sustained a healthy plant with reduced metal concentrations. For the yard soil, Compost+Al was the most effective treatment tested. For the tailings, BS+DAP 1% was the most effective treatment tested. These results indicate that in situ amendments offer a remedial alternative for the Tar Creek site.  相似文献   

18.
Monitoring of repeated composted biosolids applications is necessary for improving beneficial reuse program management strategies, because materials will likely be reapplied to the same site at a future point in time. A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13–14 years) and short-term (2–3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg ha?1) were surface applied in a split-plot design study with treatment (increasing compost rates) as the main factor and co-application time (1991, or 1991 and 2002) as the split factor applications. Short- and long-term treatment effects were evident in 2004 and 2005 for soil 0–8 cm depth pH, EC, NO3-N, NH4-N, total N, and AB-DTPA soil Cd, Cu, Mo, Zn, P, and Ba. Soil organic matter increases were still evident 13 and 14 years following composted biosolids application. The repeated composted biosolids application increased soil NO3-N and NH4-N and decreased AB-DTPA extractable Ba as compared to the single composted biosolids application in 2004; differences between short- and long-term applications were less evident in 2005. Increasing biosolids rates resulted in increased native perennial grass cover in 2005. Plant tissue Cu, Mo, Zn, and P concentrations increased, while Ba content decreased depending on specific plant species and year. Overall, the lack of many significant negative effects suggests that short- or long-term composted biosolids application at the rates studied did not adversely affect this semi-arid grassland ecosystem.  相似文献   

19.
Dairy farm effluent (DFE) comprises animal feces, urine, and wash-down water collected at the milking shed. This is collected daily during the milking season and sprayed onto grazed dairy pastures. Urine patches in grazed pastures make a significant contribution to anthropogenic N(2)O emissions. The DFE could potentially mitigate N(2)O emissions by influencing the N(2)O to dinitrogen (N(2)) ratio, since it contains water-soluble carbon (WSC). Alternatively, DFE may enhance N(2)O emissions from urine patches. The application of DFE may also provide a substrate for the production of CO(2) in pasture soils. The effects of DFE on the CO(2) and N(2)O emissions from urine patches are unknown. Thus a laboratory experiment was performed where repeated DFE applications were made to repacked soil cores. Dairy farm effluent was applied at 0, 7, or 14 d after urine deposition. The urine was applied once on Day 0. Urine contained (15)N-enriched urea. Measurements of N(2)O, N(2), and carbon dioxide (CO(2)) fluxes, soil pH, and soil inorganic N concentrations were made. After 43 d the DFE had not mitigated N(2)O fluxes from urine patches. A small increase in the N(2)O flux occurred from the urine-treated soils where DFE was applied 1 wk after urine deposition. The amount of WSC applied in the DFE proved to be insignificant compared with the amount of soil C released as CO(2) following urine application. The priming of soil C in urine patches has implications for the understanding of soil C processes in grazed pasture ecosystems and the budgeting of C within these ecosystems.  相似文献   

20.
Papermill biosolids (PB) can provide multiple benefits to the soil system. The purpose of this study was to quantify the effects of a high C/N ratio (C/N = 100) de-inked PB on soil physical and chemical properties, including soil bulk density, infiltration rates, wet aggregate stability, total soil carbon, and heavy metal concentrations. Four rates of PB (0, 50, 100, and 150 Mg ha(-1)) were applied annually, for up to 3 yr, on four agricultural soils in Ontario, Canada. Decreases in soil bulk density between 0.27 and 0.35 g cm(-3), relative to the nonamended treatment, were observed in soils receiving PB treatments over 3 yr. Total soil carbon increased within 1 yr on PB-amended soils planted to soybeans but not on soils planted to corn. Hydraulic conductivities (K fs) were greater in all soils receiving PB amendments relative to the nonamended treatment throughout the study. Other properties measured, such as pH and electrical conductivity, were relatively unchanged after 2 yr of PB applications. While some increases in heavy metal accumulation occurred, there were no clear trends observed at any of the sites related to PB rates. The results of this study provide support to the idea that annual applications of PB can add significantly to the stability of soil structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号