首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.  相似文献   

2.
An ecological data base for the San Jacinto Mountains, California, USA, was used to construct a probability model of wildland fire occurrence. The model incorporates both environmental and human factors, including vegetation, temperature, precipitation, human structures, and transportation. Spatial autocorrelation was examined for both fire activity and vegetation to determine the specification of neighborhood effects in the model. Parameters were estimated using stepwise logistic regressions. Among the explanatory variables, the variable that represents the neighborhood effects of spatial processes is shown to be of great importance in the distribution of wildland fires. An important implication of this result is that the management of wildland fires must take into consideration neighborhood effects in addition to environmental and human factors. The distribution of fire occurrence probability is more accurately mapped when the model incorporates the spatial term of neighborhood effects. The map of fire occurrence probability is useful for designing large-scale management strategies of wildfire prevention.  相似文献   

3.
Uncertainty and risk in wildland fire management: a review   总被引:3,自引:0,他引:3  
Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making.  相似文献   

4.
This study tested the hypothesis that stable C and N isotope values in surface soil and litter would be increased by fire due to volatilization of lighter isotopes. The hypothesis was tested by: (1) performing experimental laboratory burns of organic and mineral soil materials from a watershed at combinations of temperature ranging 100 to 600 degrees C and duration ranging from 1 to 60 min; (2) testing field samples of upland soils before, shortly after, and 1 yr following a wildfire in the same watershed; and (3) testing field soil samples from a down-gradient ash/sediment depositional area in a riparian zone following a runoff event after the wildfire. Muffle furnace results indicated the most effective temperature range for using stable isotopes for tracing fire impacts is 200 to 400 degrees C because lower burn temperatures may not produce strong isotopic shifts, and at temperatures>or=600 degrees C, N and C content of residual material is too low. Analyses of field soil samples were inconclusive: there was a slightly significant effect of the wildfire on delta15N values in upland watershed analyses 1 yr postburn, while riparian zone analyses results indicated that delta13C values significantly decreased approximately 0.71 per thousand over a 9 mo post-fire period (p=0.015), and ash/sediment layer delta13C values were approximately 0.65 per thousand higher than those in the A horizon. The lack of field confirmation may have been due to overall wildfire burn temperatures being <200 degrees C and/or microbial recovery and vegetative growth in the field. Thus, the muffle furnace experiment supported the hypothesis, but it is as yet unconfirmed by actual wildfire field data.  相似文献   

5.
Great Basin Land Management Planning Using Ecological Modeling   总被引:1,自引:1,他引:0  
This report describes a land management modeling effort that analyzed potential impacts of proposed actions under an updated Bureau of Land Management Resource Management Plan that will guide management for 20 years on 4.6 million hectares in the Great Basin ecoregion of the United States. State-and-transition models that included vegetation data, fire histories, and many parameters (i.e., rates of succession, fire return intervals, outcomes of management actions, and invasion rates of native and nonnative invasive species) were developed through workshops with scientific experts and range management specialists. Alternative restoration scenarios included continuation of current management, full fire suppression, wildfire use in designated fire use zones, wildfire use in resilient vegetation types only, restoration with a tenfold budget increase, no restoration treatments, and no livestock grazing. Under all the scenarios, cover of vegetation states with native perennial understory declined and was replaced by tree-invaded and weed-dominated states. The greatest differences among alternative management scenarios resulted from the use of fire as a tool to maintain native understory. Among restoration scenarios, only the scenario assuming a tenfold budget increase had a more desirable outcome than the current management scenario. Removal of livestock alone had little effect on vegetation resilience. Rather, active restoration was required. The predictive power of the model was limited by current understanding of Great Basin vegetation dynamics and data needs including statistically valid monitoring of restoration treatments, invasiveness and invasibility, and fire histories. The authors suggest that such computer models can be useful tools for systematic analysis of potential impacts in land use planning. However, for a modeling effort to be productive, the management situation must be conducive to open communication among land management agencies and partner entities, including nonprofit organizations.  相似文献   

6.
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100–1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.  相似文献   

7.
Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.  相似文献   

8.
Assessments of contaminant-related human and ecological risk require estimation of transport rates, but few data exist on wind-driven transport rates in nonagricultural systems, particularly in response to ecosystem disturbances such as forest wildfire and also relative to water-driven transport. The Cerro Grande wildfire in May of 2000 burned across ponderosa pine (Pinus ponderosa Douglas ex P.&C. Lawson var. scopulorum Englem.) forest within Los Alamos National Laboratory in northern New Mexico, where contaminant transport and associated post-fire inhalation risks are of concern. In response, the objectives of this study were to measure and compare wind-driven horizontal and vertical dust fluxes, metrics of transport related to wind erosion, for 3 yr for sites differentially affected by the Cerro Grande wildfire: unburned, moderately burned (fire mostly confined to ground vegetation), and severely burned (crown fire). Wind-driven dust flux was significantly greater in both types of burned areas relative to unburned areas, by more than one order of magnitude initially and by two to three times 1 yr after the fire. Unexpectedly, the elevated dust fluxes did not decrease during the second and third years in burned areas, apparently because ongoing drought delayed post-fire recovery. Our estimates enable assessment of amplification in contaminant-related risks following a major type of disturbance-wildfire, which is expected to increase in intensity and frequency due to climate change. More generally, our results highlight the importance of considering wind- as well as water-driven transport and erosion, particularly following disturbance, for ecosystem biogeochemistry in general and human and ecological risk assessment in particular.  相似文献   

9.
A model is presented for predicting mortality of conifers after wildfire. The model requires stand data inputs and is linked with a mathematical fire behavior model that calculates fireline intensity. Fraction of crown volume killed is calculated for each species in a stand based on mensurational data. Duration of lethal heat at the base of trees is calculated from fuel consumption and burning time values. Fraction of crown volume killed and the ratio of critical time for cambial kill to duration of lethal heat are independent variables in a function that calculates probability of mortality. The model produces reasonable estimates of stand mortality for fire and site characteristics found in the northern Rocky Mountains, USA. It has a broad resolution appropriate for use in fire management planning and has potential applications for coniferous forests throughout the United States.  相似文献   

10.
This study examines the bushfire (wildland fire) risk to the built environment in Australia. The most salient result is that the annual probability of building destruction has remained almost constant over the last century despite large demographic and social changes as well as improvements in fire fighting technique and resources. Most historical losses have taken place in a few extreme fires which if repeated are likely to overwhelm even the most professional of fire services. We also calculate the average annual probability of a random home on the urban–bushland interface being destroyed by a bushfire to be of the order of 1 in 6500, a factor 6.5 times lower than the ignition probability of a structural house fire. Thus on average and if this risk was perceived rationally, the incentive for individual homeowners to mitigate and reduce the bushfire danger even further is low. This being the case and despite predictions of an increasing likelihood of conditions favouring bushfires under global climate change, we suspect that building losses due to bushfires are unlikely to alter materially in the near future.  相似文献   

11.
Fire management agencies in Canada are mandated with protecting multiple forest values from wildfire. Deciding where to reduce fire hazard and how to allocate resources and fire suppression efforts requires an understanding of the values-at-risk from wildfire. The protection of recreation infrastructure is often assumed to provide adequate protection of recreation values. We use an expert judgment approach to provide a spatial distribution of recreation values-at-risk in the forested eastern slopes of the Rocky Mountain region of Alberta, Canada. Data were collected in 2004 from 11 land managers responsible for public lands management and wildfire prevention in the region. Expert assessments showed that recreation values were not confined to areas with publicly funded infrastructure. Exploratory spatial analysis of the ratings identified hotspots and cold spots of recreation activity. Maps resulting from these efforts will provide guidance to fire managers in the prioritization of fire management activities.  相似文献   

12.
This article is based on a multimethod study designed to clarify influences on wildfire hazard vulnerability in Arizona’s White Mountains, USA. Findings reveal that multiple factors operating across scales generate socially unequal wildfire risks. At the household scale, conflicting environmental values, reliance on fire insurance and firefighting institutions, a lack of place dependency, and social vulnerability (e.g., a lack of financial, physical, and/or legal capacity to reduce risks) were found to be important influences on wildfire risk. At the regional-scale, the shift from a resource extraction to environmental amenity-based economy has transformed ecological communities, produced unequal social distributions of risks and resources, and shaped people’s social and environmental interactions in everyday life. While working-class locals are more socially vulnerable than amenity migrants to wildfire hazards, they have also been more active in attempting to reduce risks in the aftermath of the disastrous 2002 Rodeo-Chediski fire. Social tensions between locals and amenity migrants temporarily dissolved immediately following the disaster, only to be exacerbated by the heightened perception of risk and the differential commitment to hazard mitigation displayed by these groups over a 2-year study period. Findings suggest that to enhance wildfire safety, environmental managers should acknowledge the environmental benefits associated with hazardous landscapes, the incentives created by risk management programs, and the specific constraints to action for relevant social groups in changing human-environmental context.  相似文献   

13.
ABSTRACT

The impacts of extreme weather events, causing severe storms and wildfires, cascade across administrative borders within a country, challenging the steering capacity of governance networks at different political scales. This paper examines how accountability and risk were constructed and negotiated in the aftermath of Sweden’s largest wildfire. It draws on results from an interview study with executives of organizations and landowners involved, and an analysis of government reports about the wildfire’s cause and consequences. Although the fire was human-caused, public administrative bodies paid considerable attention to the local emergency services and their poor handling of the wildfire, caused by lack of knowledge of forest fire behavior. The study confirms many of the challenges associated with governance networks. It finds that issues about who to hold accountable, in what forum and for what issue are not fully addressed, being overwhelmed by demands for better knowledge of forest fire prevention and improved coordination and collaboration. To conclude, the paper calls for a better-informed public administration, forest sector and interrelated networks that take responsibility for their actions or lack thereof.  相似文献   

14.
Three causes have been identified for the spiraling cost of wildfire suppression in the United States: climate change, fuel accumulation from past wildfire suppression, and development in fire-prone areas. Because little is likely to be performed to halt the effects of climate on wildfire risk, and because fuel-management budgets cannot keep pace with fuel accumulation let alone reverse it, changing the behaviors of existing and potential homeowners in fire-prone areas is the most promising approach to decreasing the cost of suppressing wildfires in the wildland–urban interface and increasing the odds of homes surviving wildfire events. Wildfire education efforts encourage homeowners to manage their property to decrease wildfire risk. Such programs may be more effective with a better understanding of the factors related to homeowners’ decisions to undertake wildfire risk–reduction actions. In this study, we measured whether homeowners had implemented 12 wildfire risk–mitigation measures in 2 Colorado Front Range counties. We found that wildfire information received from local volunteer fire departments and county wildfire specialists, as well as talking with neighbors about wildfire, were positively associated with higher levels of mitigation. Firsthand experience in the form of preparing for or undertaking an evacuation was also associated with a higher level of mitigation. Finally, homeowners who perceived higher levels of wildfire risk on their property had undertaken higher levels of wildfire-risk mitigation on their property.  相似文献   

15.
Wildfires are a common feature of peatland environments, but the carbon balance of these wildfires is often not considered and the production of refractory black carbon in these wildfires could be an important addition to carbon accumulation and mitigate losses of biomass during the fire. This study investigates the biomass and carbon losses during a moorland wildfire. Changes in above-ground carbon stocks were calculated using a combination of field data, laboratory measurements and literature values. The results show that approximately 14% of the carbon in the original above-ground biomass remained on the site after the burn. Black carbon production was approximately 6 gC m(-2) which constituted 4.3% of the biomass lost. The survival of biomass and black carbon may help to mitigate the loss of carbon during the fire.  相似文献   

16.
Wildland fire in the South commands considerable attention, given the expanding wildland urban interface (WUI) across the region. Much of this growth is propelled by higher income retirees and others desiring natural amenity residential settings. However, population growth in the WUI increases the likelihood of wildfire fire ignition caused by people, as humans account for 93% of all wildfires fires in the South. Coexisting with newly arrived, affluent WUI populations are working class, poor or otherwise socially vulnerable populations. The latter groups typically experience greater losses from environmental disasters such as wildfire because lower income residents are less likely to have established mitigation programs in place to help absorb loss. We use geographically weighted regression to examine spatial variation in the association between social vulnerability (SOVUL) and wildfire risk. In doing so, we identify “hot spots” or geographical clusters where SOVUL varies positively with wildfire risk across six Southern states—Alabama, Arkansas, Florida, Georgia, Mississippi, and South Carolina. These clusters may or may not be located in the WUI. These hot spots are most prevalent in South Carolina and Florida. Identification of these population clusters can aid wildfire managers in deciding which communities to prioritize for mitigation programming.  相似文献   

17.
This study examined neighbourhood level wildfire mitigation programs being implemented in neighbourhoods in Canada (FireSmart-ForestWise), Australia (Community Fireguard) and the US (Firewise Communities). Semi-structured interviews were completed with 19 residents participating in the programs. A wide range of activities were completed as part of the three programs. Despite differences between the three programs, participants appeared to participate in the programs for three main reasons: Fire experience, agency involvement, and personal and family protection. A fire therefore provides a window of opportunity to engage residents in neighbourhood level wildfire mitigation programs. The neighbourhood level wildfire mitigation programs helped to reduce the wildfire risk, but also enhanced both community resilience and relationships between residents and government agencies.  相似文献   

18.
Although recurrent fire events with very short return periods have the most dangerous effects on landscape degradation, only a few papers have explored the landscape ecological factors that drive the probability of fire recurrence. In this paper we apply a habitat suitability model for analyzing the spatial relationship between a selected set of landscape factors (mainly land use types) and fire recurrence in Sardinia (Italy) in the years 2005–2010. Our results point out that fire occurrence in already burned areas is lower than expected in natural and semi-natural land cover types, like forest and shrublands. To the contrary, like in all regions where human activity is the main source of fire ignitions, the probability of fire recurrence is higher at low altitudes and close to roads and to urban and agricultural land cover types, thus showing marked preference for those landscape factors denoting higher anthropogenic ignition risk.  相似文献   

19.
Wildfire effects on soil nutrients and leaching in a tahoe basin watershed   总被引:1,自引:0,他引:1  
A wildfire burned through a previously sampled research site, allowing pre- and post-burn measurements of the forest floor, soils, and soil leaching near Lake Tahoe, Nevada. Fire and post-fire erosion caused large and statistically significant (P < or = 0.05) losses of C, N, P, S, Ca, and Mg from the forest floor. There were no statistically significant effects on mineral soils aside from a decrease in total N in the surface (A11) horizon, an increase in pH in the A11 horizon, and increases in water-extractable SO4(2-) in the A11 and A12 horizons. Burning caused consistent but nonsignificant increases in exchangeable Ca2+ in most horizons, but no consistent or statistically significant effects on exchangeable K+ or Mg2+, or on Bray-, bicarbonate-, or water-extractable P concentrations. Before the burn, there were no significant differences in leaching, but during the first winter after the fire, soil solution concentrations of NH4+, NO3-, ortho-P, and (especially) SO4(2-) were elevated in the burned area, and resin lysimeters showed significant increases in the leaching of NH4+ and mineral N. The leaching losses of mineral N were much smaller than the losses from the forest floor and A11 horizons, however. We conclude that the major short-term effects of wildfire were on leaching whereas the major long-term effect was the loss of N from the forest floor and soil during the fire.  相似文献   

20.
Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号