首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land‐use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest region of southeastern Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un‐mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds, and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds were analyzed using Monte Carlo mass balance un‐mixing and it was found that: δ15N showed the ability to differentiate streambank erosion and surface soil erosion; and δ13C showed the ability to differentiate soil organic matter and geogenic organic matter. Results from the analyses suggest that streambank erosion downstream of surface coal mining sites is an especially significant source of sediment in coal mining disturbed watersheds. Further, the results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes. The dual‐isotope technique provides a useful method for further investigation of the impact of surface coal mining in the uplands of the watershed upon the geomorphologic state of the channel and the source of organic matter in aquatic systems impacted by surface coal mining.  相似文献   

2.
ABSTRACT: We measured annual discharges of water, sediments, and nutrients from 10 watersheds with differing proportions of agricultural lands in the Piedmont physiographic province of the Chesapeake Bay drainage. Flow-weighted mean concentrations of total N, nitrate, and dissolved silicate in watershed discharges were correlated with the proportion of cropland in the watershed. In contrast, concentrations of P species did not correlate with cropland. Organic P and C correlated with the concentration of suspended particles, which differed among watersheds. Thus, the ratio of N:P:Si in discharges differed greatly among watersheds, potentially affecting N, P or Si limitation of phytoplankton growth in the receiving waters. Simple regression models of N discharge versus the percentage of cropland suggest that croplands discharge 29–42 kg N ha-1 yr-1 and other lands discharge 1.2–5.8 kg N ha-1 yr-1. We estimated net anthropogenic input of N to croplands and other lands using county level data on agriculture and N deposition from the atmosphere. For most of the study watersheds, N discharge amounted to less than half of the net anthropogenic N.  相似文献   

3.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   

4.
Management of Sedimentation in Tropical Watersheds   总被引:2,自引:0,他引:2  
/ The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control  相似文献   

5.
ABSTRACT: A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed stream-flow during the entire simulation period was 13.36 × 106 m3 and the simulated streamflow volume was 13.82 × 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.  相似文献   

6.
ABSTRACT: The proposed removal of Ballville Dam was assessed by (1) using a new Geographic Information Systems (GIS) based method for calculating reservoir sediment storage, (2) evaluating sediment properties and contamination from core data, and (3) assessing downstream impacts from sediment routing calculations. A 1903 (pre‐dam) map was manipulated using GIS to recreate the reservoir bathymetry at time of dam construction and used in combination with a detailed 1993 bathymetric survey to calculate sediment volumes and thickness. Reservoir sediment properties and geochemistry were determined from 14 sediment vibracores. Annual sedimentation rates varied from 1.7 to 4.3 g/cm2/yr based on Cesium‐137 (137Cs) and Lead‐210 (210Pb) geochronology and dated flood layers. The pore fluid geochemistry (Ba, Co, Cu, Mn) of four cores showed surficial enrichments in Cu, while Co and Mn show secondary peaks within the sediments. GIS calculations showed that a designed channel through the former reservoir able to accommodate the 10 percent Probable Maximum Flood (PMF) would require removing approximately 0.35 million m3 of sediment (27 percent of the reservoir fill), either by dredging at a cost of up to $6.3 million or by releasing fine grained sediment downstream. A sediment routing model was applied for the critical 6 km downstream using four cross sections. The sediment routing model predicts that, for flows exceeding minimum Mean Daily Flow (1924 to 1998 data), greater than 90 percent of this sediment would be transported through downstream reaches into Lake Erie (Sandusky Bay).  相似文献   

7.
ABSTRACT: Water yields from a permanent icefield were increased by 28 percent through surface dusting with carbon black. On July 4, 1972, approximately 15 acres (60,700 m2) of a permanent icefield were treated with 150 lbs. per acre (16.8 g/m2) of commercial carbon black. The icefield was located on the eastern slope of the Colorado Front Range at an elevation of 11,500 feet (3500 m). The carbon black was applied by helicopter using a dry applicator slung below a helicopter. The treatment effect was evaluated by control plot observations of melt and streamflow comparison before and after treatment. The ablation plot studies and runoff comparison with an adjacent watershed both indicated a 28 percent increase in ablation and meltwater runoff, respectively, for the months of July and August. The study indicates icefields could be used as cold-storage reservoirs for use in periods of critical water shortages.  相似文献   

8.
ABSTRACT: Bathymetric and sedimentation surveys were conducted using a dual frequency (28/200 kHz) echo sounder system in two reservoirs (Lee Creek Reservoir and Lake Shepherd Springs) in the Ozark Plateau of northwestern Arkansas. Echo sounder survey data were merged within geographic information system (GIS) software to provide detailed visualization and analyses of current depths, pre‐impoundment topography, distribution, thickness, and volume estimates of lacustrine sediment, time averaged sediment accumulation rates, long term average annual sediment flux, and water storage capacity. Calculated long term average sediment accumulation rates were used to model sediment infilling and projected lifetimes of each reservoir. Results from echo sounder surveys and GIS analyses suggest that the Lee Creek Reservoir has a projected lifetime of approximately 500 years compared to a projected lifetime for Lake Shepherd Springs of approximately 3,000 years. Estimated differences in projected lifetimes of these reservoirs reflected differences in initial reservoir volume and long term average annual sediment flux from the respective watersheds related to watershed area, physiography, land cover, and land use. The universal soil loss equation (USLE) model generated sediment fluxes an order of magnitude larger from the watersheds of both reservoirs compared to the geophysical data estimates. This study demonstrated the utility of merging geophysical survey (echo sounder) data within a GIS as an aid to understanding patterns of reservoir sedimentation. These data and analyses also provide a baseline relevant to understanding sedimentation processes and are necessary for development of long term management plans for these reservoirs and their watersheds.  相似文献   

9.
ABSTRACT: The distribution of sediment physical characteristics, sediment phosphorus (P) pools, and laboratory‐based rates of P release from the sediments were used to identify regions and dosage for alum treatment in Wind Lake, Wisconsin. Using variations in sediment moisture content, we identified an erosional zone at depths < 1.4 m and an accumulation zone at depths > 2.6 m. Mean concentrations of porewater P, loosely‐bound P, iron‐ and aluminum‐bound P, and mean rates of P release from sediments under anoxic conditions were high in the accumulation zone compared to sediment P characteristics in the erosional zone, indicating focusing of readily mobilized sediment P pools from shallow regions and accumulation to deep regions. We determined that a future alum treatment for control of internal P loading would be most effective at depths > 2.6 in the accumulation zone. The mean rate of anoxic P release from sediments encountered in the accumulation zone (8.3 mg m‐2 d‐1) was used in conjunction with a summer anoxic period of 122 d, and a treatment area of 1.6 km2 to estimate an internal P load of 1,600 kg to be controlled. Our results suggest that an understanding of the distribution of sediment P pools and P fluxes in lakes provides a strategy for estimating alum dosage and application areas.  相似文献   

10.
ABSTRACT: Long-term land use and reservoir sedimentation were quantified and linked in a small agricultural reservoir-watershed system without having historical data. Land use was determined from a time sequence of aerial photographs, and reservoir sedimentation was determined from cores with 137Cs dating techniques. They were linked by relating sediment deposition to potential sediment production which was determined by the Universal Soil Loss Equation and by SCS estimates for gullied land. Sediment cores were collected from Tecumseh Lake, a 55-ha reservoir with a 1,189-ha agricultural watershed, constructed in 1934 in central Oklahoma. Reservoir sediment deposition decreased from an average of 5,933 Mg/yr from 1934 to 1954, to 3,179 Mg/yr from 1954 to 1962, and finally to 1,017 Mg/yr from 1962 to 1987. Potential sediment production decreased from an average of 29,892 to 11,122 and then to 3,589 Mg/yr for the same time periods as above, respectively. Reductions in deposition and sediment production corresponded to reductions in cultivated and abandoned cropland which became perennial pasture. Together, cultivated and abandoned cropland accounted for 59 percent of the watershed in 1937, 24 percent in 1954, and 10 percent in 1962. Roadway erosion, stream bank erosion, stored stream channel sediment, and long-term precipitation were considered, but none seemed to play a significant role in changing sediment deposition rates. Instead, the dominant factor was the conversion of fields to perennial pastures. The effect of conservation measures on reservoir sedimentation can now be quantified for many reservoirs where historical data is not available.  相似文献   

11.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   

12.
ABSTRACT: The ability to predict how streams and wetlands retain phosphorus (P) is critical to the management of watersheds that contribute nutrients to adjacent aquatic systems such as lakes. Field and laboratory experiments were conducted to determine the P assimilatory capacity of a stream (Otter Creek) in the Taylor Creek/Nubbin Slough Basin located north of Lake Okeechobee, Florida. Dominant soils in this basin are sandy Spodosols; landuse is primarily dairy farms and beef cattle pastures. Estimates of P assimilation show that sediments assimilate approximately 5 percent of the P load. Phosphorus assimilation rates in the stream were estimated using first-order relationships based on the total P concentration of the water column as a function of distance from the primary source. This method assumes minimal lateral inputs. Stream lengths required for one turnover in P assimilation were estimated to be in the range of 3–16 km. Laboratory studies using intact sediment cores indicated a P assimilation rate of 0.025 m day?1, and equilibrium P concentration of 0.16 ± 0.03 mg L?1 in the water column. Dissolved P concentration gradients in the sediments showed upward flux of P at water column P concentration of <0.16 mg L?1. Approximately 56–77 percent of the P assimilated in the above-ground vegetation during active growth was released or translocated within six months of senesence, suggesting short-term storage in above-ground vegetation. Bottom sediments and recalcitrant detrital plant tissue provide for long-term P assimilation in the creek. Although stream sediments have the potential to adsorb P, high flow rate and low contact period between water and sediment limits this process.  相似文献   

13.
The transformation of nitrate was investigated in diverse stream sediments from six areas of Southern Ontario, Canada. Laboratory Experiments conducted with intact 0-5 cm depth sediment cores overlain with aerated 5 mg/l nitrate-N solution reveald considerable nitrate depletion during a six-day period as a resuit of denitrification and nitrate reduction to ammonium. Nitrification and ammonification also occurred simultaneously with nitrate reduction in many stream sediments. Mixed 0-5 cm depth sediments collected from 81 stream sites were used to examine the relationship between microbial nitrate removal and sediment characteristics. Rates of nitrate-N loss from aerated 5 mg/l nitrate-N solutions overlying these sediments ranged between 11 and 171 mg/m2/day for a 24-hour incubation period. Rates of nitrate loss for the 24-hour period exhibited a significant positive correlation (r=0.72) with sediment ammonium content. Organic carbon, total nitrogen and sediment texture also had significant but weak correlations with nitrate loss.  相似文献   

14.
The Neebing-McIntyre floodway in Thunder Bay, Ontario, Canada, has been constructed with a relatively straight and uniform trapezoidal channel, compared with the prechannelized sinuous reaches of the Neebing and the McIntyre rivers. The flow regime of the floodway also contrasts significantly with the prechannelized regime, because of the combination of discharges from these rivers into a new channel and the regulation of flows by a diversion structure. The maximum channel capacity of the floodway is about 284 m3 s–1 (175-year regional flood), compared with about 40 m3 s–1 and 60 m3 s–1, respectively, for the Neebing and the McIntyre. According to regime theories, the construction of a straight and trapezoidal channel has upset the equilibrium of the stream system and therefore should lead to some accelerated erosion and sedimentation processes in the new channel immediately after construction. Erosion potential is particularly high during higher discharge events, when flow velocities are expected to be greater than the prechannelized velocities of the Neebing and the McIntyre. The overall sediment yield of the watershed is low (71t km–2 yr–1), compared with other documented watersheds of North America, but the rates of deposition in the floodway are relatively high, mainly due to the backwater effect of Lake Superior. Unless maintained by constant channel work, the floodway will tend to fill up with sediment, until a postconstructional equilibrium is reestablished.  相似文献   

15.
ABSTRACT: Environmental background levels of Pb were measured in ponds, river waters, sediments, suspended sediments, rocks, and air particulates within the Kankakee watershed during the period of 1995 to 1999. Stable isotopic Pb distinguished airborne Pb and its incorporation into riverine wetland sediments from geogenic Pb measured in river sediments. The provenance of the naturally‐occurring Pb is from carbonate bedrock and contributes comparable concentrations in riverbank sediments (25.9–30.4 mg kg?1) as Pb found in wetland sediments (18.6–24.8 mg kg?1). Estimates of anthropogenic Pb contributions from airfall into the Kankakee wetlands were found to be near 0.43–0.71 Bq cm?2 yr?1 during 1995 to 1999. While leachable Pb data suggests the uppermost layers of pond sediments were disturbed, 210Pb analyses from undisturbed sedimentation suggests Pb‐bearing sediments accumulate approximately 0.46–0.51 cm yr?1 in the ponds within the riparian zones. Transboundary Pb pollution from aerosols of industrial Pb across the Great Lakes occurs, but Pb isotopy indicates that the Pb concentrations are comparable to natural concentrations of Pb in both waters and sediments within the Kankakee watershed.  相似文献   

16.
ABSTRACT: Buffer strips are undisturbed, naturally vegetated zones around water supply reservoirs and their tributaries that are a recognized and integral aspect of watershed management. These strips can be very effective in protecting the quality of public potable water supply reservoirs by removing sediment and associated pollutants, reducing bank erosion, and displacing activities from the water's edge that represent potential sources of nonpoint source pollutant generation. As part of a comprehensive watershed management protect for the State of New Jersey, a parameter-based buffer strip model was developed for application to all watersheds above water supply intakes or reservoirs. Input requirements for the model include a combination of slope, width, and time of travel. The application of the model to a watershed in New Jersey with a recommended buffer strip width that ranges from 50 to 300 feet, depending upon a number of assumptions, results in from 6 to 13 percent of the watershed above the reservoir being occupied by the buffer.  相似文献   

17.
ABSTRACT: Farmers can generate environmental benefits (improved water quality and fisheries and wildlife habitat), but they may not be able to quantify them. Furthermore, farmers may reduce their incomes from managing lands to produce these positive externalities but receive little monetary compensation in return. This study simulated the relationship between agricultural practices, water quality, fish responses to suspended sediment and farm income within two small watersheds, one of a cool water stream and one of a warm water stream. Using the Agricultural Drainage and Pesticide Transport (ADAPT) model, this study related best management practices (BMPs) to calculated instream suspended sediment concentrations by estimating sediment delivery, runoff, base flow, and streambank erosion to quantify the effects of suspended sediment exposure on fish communities. By implementing selected BMPs in each watershed, annual net farm income declined $18,000 to $28,000 (1 to 3 percent) from previous levels. “Lethal” fish events from suspended sediments in the cool water watershed decreased by 60 percent as conservation tillage and riparian buffers increased. Despite reducing suspended sediments by 25 percent, BMPs in the warm water watershed did not reduce the negative response of the fisheries. Differences in responses (physical and biological) between watersheds highlight potential gains in economic efficiency by targeting BMPs or by offering performance based “green payments.”  相似文献   

18.
Bedload transport was measured with two sampler types (vortex tube and Helley-Smith pressure differential) for three major storms at Flynn Creek, which drains a 2.2-km2 forested watershed in the Oregon Coast Range. The largest flow during two winters of monitoring had a peak discharge of 0.79 m3 s-1 km-2, with an associated recurrence interval of ? 1.3 yr. The median particle diameter of sediment in transport was generally < 1 mm. The vortex tube and its associated sample box were relatively inefficient at trapping particles < 10 mm in diameter; however, even after transport rates were adjusted to account for sampling deficiencies of the sample box, they still averaged 42–47 percent of those obtained with the Helley-Smith sampler. Organic matter and sand sized sediments in transport also were observed to partially plug the 0.2-mm-mesh bag of the Helley-Smith sampler. Large temporal variability in bedload transport rates was measured during periods of high flow.  相似文献   

19.
Suspended sediment data from a 154 ha watershed on northeast Chichagof Island, Alaska, were collected over three fall storm seasons from 1980 to 1982. Sediment rating curves for nine pooled storms explained less than 34 percent of the variation in total suspended solids (TSS). Significantly higher concentrations of suspended sediment occurred during the rising limb of storm hydrographs than for similar flows on the falling limb, accounting for hysteresis loops in TSS versus streamflow plots for individual storms. These hysteresis loops were wider during early season storms, indicating that easily transportable fine sediment may have been flushed from the upper portion of channel banks and from behind large organic debris during early season peak flows. Regression relationships (TSS versus Q) developed for the highest stormflows (> 1 m3/s) had steeper slopes than the lower stormflows (< 1 m3/s). Turbidity correlated well (r=0.94) with TSS for all storm-flow data combined. Organic matter constituted an average of 35 percent (by weight) of TSS for all water quality samples.  相似文献   

20.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号