首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Both catchment experiments and a review of hydrologic processes suggest a varying effect of forest harvest on the magnitude of peak flows according to the cause of those peak flows. In northwestern Montana and Northeastern Idaho, annual maximum flows can result from spring snowmelt, rain, mid-winter rain-on-snow, or rain-on-spring-snowmelt. Meteorologic and physical data were used to determine the cause of annual maximum flows in six basins which had the necessary data and were smaller than 150 mi2. Rain-on-spring-snowmelt was the most frequent cause of annual maximum flows in all six basins, although there was a strong gradient in the magnitude and cause of peak flows from southwest to northeast. Less frequent mid-winter rain-on-snow events caused the largest flows on record in four basins. Mid-winter rain-on-snow should be distinguished from rain-on-spring-snowmelt because of differences in seasonal timing, the relative contributions of rain vs. snowmelt, and the projected effects of forest harvest. The effects of mixed flood populations on the flood-frequency curve varied from basin to basin. Annual maximum daily flows could not be reliably predicted from rainfall and snowmelt data.  相似文献   

2.
A common assumption in flood frequency analysis is that annual peak flows are independent events. This study was undertaken to investigate the validity of this assumption with regard to Pennsylvania streams by statistically analyzing the dependence between annual peak flows and to determine if basin carryover effects relate to the degree of dependence. Five tests of dependence, the autocorrelation test, the median crossing test, the turning points test, the rank difference test, and the Spearman rank order serial correlation coefficient test were applied to the series of annual peak flows for 57 streams. Of the 57 streams analyzed, only two exhibited signs of dependence by at least two of the tests performed, and the baseflow component of annual peak flows was found to be unrelated to the degree of dependence exhibited between annual peak flows. It was concluded that the assumption of independence of annual peak flows is valid in flood frequency analysis for Pennsylvania streams.  相似文献   

3.
ABSTRACT: The Salt and Verde Rivers of central Arizona provide the water supply for metropolitan Phoenix and a considerable acreage of irrigated agriculture. Rapid urbanization has caused concern over future water supply and aggravated flooding in the already flood-prone Salt River Valley. Tree-ring data were used as a proxy source to extend the annual and seasonal runoff records back to A.D. 1580 and thus to determine whether the period of record for annual discharge adequately represents the long term flow characteristics of the two rivers. Results show that several periods of extended low flow have occurred during the past 400 years, many of which were more severe then any comparable period since 1890. The low flow periods appear to have a recurrence interval of about 22 years. Also the gaged records contain an above average number of high seasonal and annual flows when compared to the entire 400 years. The reconstructions contain important implications for future water supply and flood potentials in the Salt River Valley.  相似文献   

4.
ABSTRACT: This study was conducted in the Klamath Basin of southwestern Oregon to evaluate the dependency of riparian plant communities upon infrequent flooding. Plant communities were sampled with 1 m2 quadrats along established cross‐sections. Data collected for purposes of hydraulic modeling included channel and floodplain elevations (i.e., cross‐sectional profiles) and water surface elevations associated with specific discharges. The elevational distribution of hydrophytic plant communities relative to modeled return periods provided the basis for establishing relationships between these variables for nine sites. Results indicate that, on average, a peak flow frequency of 4.6 years (range of 3.1 to 7.6 years) was needed to sustain riparian plant communities at seven of nine sites. At two sites, results indicated return periods of more than 25 years were needed; these results possibly were influenced by local geomorphic conditions (a narrow steep channel in one case and an incised channel in the other). Overall, these results tend to confirm a strong dependency of riparian plant communities on overbank flows.  相似文献   

5.
ABSTRACT: The impact of man made change on the hydrology of developing watersheds is frequently measured in terms of the ratio: flood peak after development to flood peak before development over a range of return periods. However, the analysis of urbanization effects on flood frequency presents a vexing problem because of a general lack of flood data in urban areas and also because of nonstationarity in the development process. Clearly, the flood peak ratio depends on the impervious fraction and percent of basin sewered and these factors have been taken into account in recent urban flood peak models. In genral, these models are developed either by: (1) split sample analysis of available annual flood data, or (2) by computer simulation using mathematical watershed models capable of representing man made changes. The present paper discusses the results of work in progress to characterize the impact of urbanization on small developing watersheds in Pennsylvania.  相似文献   

6.
The 2010 dam breach and consequent anomalous flood event on the Cedar River in Nebraska, USA provided an opportunity to study the following objectives: (1) evaluate the impact of an extreme flood event on streambank retreat along a 45 km stretch relative to the average annual retreat; (2) quantify the changes in streambank retreat for each km segment downstream of the breach; and (3) examine the influence of riparian vegetation and radius of curvature on meander bank erosion rate. During the hydrologic event, discharge peaked at nearly three times greater than the next highest recorded rate and equated to a return period of 2,000 years. Aerial images and ArcGIS were utilized to calculate the average annual streambank retreat for each year during the preflood (2006–2010), flood (2010), and postflood (2010–2016) periods. The 2010 flood period had a significantly higher average annual streambank retreat of 2,820 m2/km/yr than the preflood and postflood periods, which, respectively, measured 576 and 384 m2/km/yr. From 2006 to 2016, 29% of all streambank erosion was from this one extreme flood event, thus demonstrating the impact that one extreme flood event can have on streambank retreat and the geomorphology of a stream system.  相似文献   

7.
Much attention has been invested in the model choice problem for peak annual flows, in the context of flood frequency analysis. The authors would sidestep this dilemma through non-parametric density estimation methodology, but recognize that the standard nonparametric estimators preclude the use of prior information and related data, and furthermore have virtually no tail at all. Here we offer a remedy for these inadequacies by introducing an estimator which mixes parametric and nonparametric density estimates. We prove that our mixture rule is consistent. By this procedure, we do allow incorporation of prior information, experience, and regional data information, but nevertheless provide a safeguard against incorrect model choice.  相似文献   

8.
ABSTRACT: The probability distributions of annual peak flows used in flood risk analysis quantify the risk that a design flood will be exceeded. But the parameters of these distributions are themselves to a degree uncertain and this uncertainty increases the risk that the flood protection provided will in fact prove to be inadequate. The increase in flood risk due to parameter uncertainty is small when a fairly long record of data is available and the annual flood peaks are serially independent, which is the standard assumption in flood frequency analysis. But standard tests for serial independence are insensitive to the type of grouping of high and low values in a time series, which is measured by the Hurst coefficient. This grouping increases the parameter uncertainty considerably. A study of 49 annual peak flow series for Canadian rivers shows that many have a high Hurst coefficient. The corresponding increase in flood risk due to parameter uncertainty is shown to be substantial even for rivers with a long record, and therefore should not be neglected. The paper presents a method of rationally combining parameter uncertainty due to serial correlation, and the stochastic variability of peak flows in a single risk assessment. In addition, a relatively simple time series model that is capable of reproducing the observed serial correlation of flood peaks is presented.  相似文献   

9.
ABSTRACT: Flood potential data can be effectively interpreted if simple frequency analysis concepts are used to explain the significance of flood potential. Instead of simply presenting data as a quantitative amount or as a percentage of the average condition, predictions can be discussed in terms of their probabilities of exceedance, or return periods. Criteria are presented for evaluating the significance of various return periods. Frequency interpretations are applied to snow course data, peak flow forecasts, and streamflow volume forecasts in northern Utah to illustrate these concepts. In addition, access to realtime data allows tracking of snowmelt progression and identification of any deviations from the forecast flood potential situation. Several data elements, including snowpack, streamfiow volume and peak, and realtime data are jointly evaluated to assess potential hazard and probable risk.  相似文献   

10.
Probability distributions that model the return periods of flood characteristics derived from partial duration series are proposed and tested in the Fraser River catchment of British Columbia. Theoretical distributions describing the magnitude, duration, frequency and timing of floods are found to provide a goof fit to the observed data. The five estimated parameters summarizing the flood characteristics of each basin are entered into a discriminant analysis procedure to establish flood regions. Three regions were identified, each displaying flood behavior closely related to the physical conditions of the catchment. Within each region, regression equations are obtained between parameter values and basin climatic and physiographic variables. These equations provide a satisfactory prediction of flood parameters and this allows the estimation of a comprehensive set of flood characteristics for areas with sparse hydrologic information.  相似文献   

11.
ABSTRACT: Trends in streamflow characteristics were analyzed for streams in southwestern Wisconsin's Driftless Area by using data at selected gaging stations. The analyses indicate that annual low flows have increased significantly, whereas annual flood peaks have decreased. The same trends were not observed for forested areas of northern Wisconsin. Streamflow trends for other streams in southeastern Wisconsin draining predominantly agricultural land were similar to trends for Driftless Area streams for annual low flows. The causes for the trends are not well understood nor are the effects. Trends in annual precipitation do not explain the observed trends in streamflow. Other studies have found that erosion rates decreased significantly in the Driftless Area, and have attributed this reduction to a change of agricultural practices, which increase infiltration, decrease flood peaks, and increase low flows.  相似文献   

12.
Abstract: This study investigates the regional analysis of annual maximum flood series of 48 stream gauging stations in the basins of the West Mediterranean Region in Turkey. The region is divided into three homogeneous subregions according to both Student‐t test and Dalrymple homogeneity test. The regional relationships of mean annual flood per unit area‐drainage area and coefficient of skew‐coefficient of variation are obtained. Two statistically meaningful relationships of the mean flood per unit area‐drainage area and a unique relationship between skewness and variation coefficients exist. Results show that the index‐flood method may be applicable to each homogenous subregion to estimate flood quantiles in the study area.  相似文献   

13.
A method of predicting probability distributions of annual floods is presented and is applied to the Fraser River catchment of British Columbia. The Gumbel distribution is found to adequately describe the observed flood frequency data. Using the estimated Gumbel parameters, discriminant analysis is performed to separate basins into flood regions. Within each region, regression analysis is used to relate physiographic and climatic variables to the means and standard deviations of the annual flood series. The regression equations are applied to four test basins and the results indicate that the method is suitable for an estimation of annual floods.  相似文献   

14.
ABSTRACT: A method of predicting annual flows is presented and is applied to the Fraser River catchment. Statistical tests show the annual flow records to be stationary and aerially independent and can be adequately approximated by Gaussian distributions. Estimates are made of the Gaussian parameters for each subbasin. The spatial variations of these parameters are described by third order trend surfaces. The fitted surfaces can then be used to predict parameters of ungaged basins using the latitude and longitude of the basin centroids. The predicted parametric values are substituted into the Gaussian distribution to generate flows of various return periods.  相似文献   

15.
ABSTRACT: An accounting procedure is developed which determines a flow regime that is capable of transporting an amount of bedload sediment necessary to ensure channel stability downstream. The method allows for sediment buildup in the channel within geomorphic threshold limits during low flow periods. During periods of high runoff, enough water is bypassed to transport the stored sediment. The procedure utilizes only those flows of sufficient magnitude to maintain channel stability over the long run (25–50+ years). An example is presented which determines the volume of water and frequency of release for channel maintenance purposes downstream from a hypothetical water diversion project. Of some 1,200,000 acre feet generated during a 59-year period, 86,500 acre feet was required for channel maintenance flows. Bypass flows were not required each year, but only during those years when average daily flow reached bankfull or greater. Such releases were made on 202 of the 411 days when average flows either equalled or exceeded bankfull discharge.  相似文献   

16.
ABSTRACT: Twenty-two gaging stations were selected for developing a regional flood frequency curve for small (area less than 2 square miles) watersheds in southern Illinois. Five probability functions were compared, and the extreme value type I function was selected to develop the regional flood curve. The curve was generated with the index flood method and also another empirical method that related the function parameters to the watershed area. Estimated peak discharges with various return periods were compared with the results obtained from multiple regression analysis.  相似文献   

17.
ABSTRACT: When nonparametric frequency analysis was performed on 183 stations from Ontario and Quebec, unimodal and multimodal maximum annual flood density functions were discovered. In order to determine generating mechanisms, a monthly partitioning of the annual maximum floods was undertaken. The timing of the floods revealed that the unimodal distributions reflected a single flood generating mechanism while the multi-modal densities reflected two or more mechanisms. Based on the division of the flood series by mechanisms, nine homogeneous regions were delineated. L-moment distributional homogeneity tests along with smaller standard errors for the regional equations supported the delineation.  相似文献   

18.
ABSTRACT: The construction of the Tucurui Hydroelectric Plant on the Tocantins River basin in Brazil requires flood forecasting for ensuring the safety of the cofferdam. The latter has been initially designed for a flood with a return frequency of one in 25 years. Lack of adequate forecasting facilities during the earlier stages of construction has resulted in significant damages and construction delays. Statistical forecasting models were developed by Projeto de Hidrologiay Climatologie da Amazonia (PHCA) for the purpose of preventing further damages at the site. These models are currently in use and are the subject of this paper. The application of these models during the 1980 flood season, when the highest flood on record occurred at the Tucurui site, proved of great assistance in preventing the flooding of the cofferdam. In conjunction with the development of these models a number of data collection platforms using data transmission through the GOES system were installed to provide automatically the data required for forecasting.  相似文献   

19.
ABSTRACT: Using data from 80 Oregon watersheds that ranged in size from 0.54 km2 to 27.45 km2, equations were developed to predict peak flows for use in culvert design on forest roads. Oregon was divided into six physiographic regions based on previous studies of flood frequency. In each region, data on annual peak flow from gaging stations with more than 20 years of record were analyzed using four flood frequency distributions: type 1 extremal, two parameter-log normal, three parameter-log normal, and log-Pearson type III. The log-Pearson type III distribution was found to be suitable for use in all regions of the State, based on the chi-square goodness-of-fit-test. Flood magnitudes having recurrence intervals of 10, 25, 50, and 100 years were related to physical and climatic characteristics of drainage basins by multiple regression. Drainage basin size was the most important variable in explaining the variation of flood peaks in all regions. Mean basin elevation and mean annual precipitation were also significantly related to flood peaks in two regions of western Oregon. The standard error of the estimate for the regression relationships ranged from 26 to 84 percent.  相似文献   

20.
A study is presented of the months in which the instantaneous annual maximum discharges from 66 watersheds occurred. The 2,052 flood values were measured on areas ranging from 2.4 through 214 square miles. The longest record was 60 years; the three shortest were 20. Pictorial results show both the number of floods for each month and individual discharges relative to the mean flood. A parameter which is weighted in this manner accounts for both the incidence and the magnitude of floods. Peculiarities of flood-timing charts, based on this parameter, are discussed with respect to watershed size, soils, geology, and land use. After anomolous watersheds had been assigned to special categories, flood-timing charts from most records exhibit a regional dichotomy dividing eastern from western Pennsylvania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号