首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
When designing a conservation reserve system for multiple species, spatial attributes of the reserves must be taken into account at species level. The existing optimal reserve design literature considers either one spatial attribute or when multiple attributes are considered the analysis is restricted only to one species. We built a linear integer programing model that incorporates compactness and connectivity of the landscape reserved for multiple species. The model identifies multiple reserves that each serve a subset of target species with a specified coverage probability threshold to ensure the species' long‐term survival in the reserve, and each target species is covered (protected) with another probability threshold at the reserve system level. We modeled compactness by minimizing the total distance between selected sites and central sites, and we modeled connectivity of a selected site to its designated central site by selecting at least one of its adjacent sites that has a nearer distance to the central site. We considered structural distance and functional distances that incorporated site quality between sites. We tested the model using randomly generated data on 2 species, one ground species that required structural connectivity and the other an avian species that required functional connectivity. We applied the model to 10 bird species listed as endangered by the state of Illinois (U.S.A.). Spatial coherence and selection cost of the reserves differed substantially depending on the weights assigned to these 2 criteria. The model can be used to design a reserve system for multiple species, especially species whose habitats are far apart in which case multiple disjunct but compact and connected reserves are advantageous. The model can be modified to increase or decrease the distance between reserves to reduce or promote population connectivity.  相似文献   

2.
Abstract: High rates of human-mediated mortality on animals are frequently reported inside protected areas, especially near their borders, so the overall effect of reserves on animal conservation is not usually known. To determine the effect of a traditional reserve (Doñana National Park, southwestern Spain) on the Eurasian badger (   Meles meles ), a medium sized carnivore, we studied mortality causes and rates, with the aid of radiotelemetry, in two populations inside the reserve, one closer to the border than the other. Human-related mortality ( poaching and road kills) was by far the most common cause of mortality (85% of deaths recorded). The average annual mortality rate due to poaching was high (0.48 ± 0.08) for the population close to the border of the park, whereas none of the radiomarked badgers in the core of the reserve died during the study period. A logistic model that included distance from the border of the park, sampling effort, and the local area (i.e., edge and core populations) indicated that the difference between both sites was due to the effect of distance from the border on survival probability. On a regional scale, badger density at the core of the park was 3.16 times higher than outside. Overall, the effect of the reserve was positive, but edge effects reduced reserve effectiveness by 36%. Edge effects in close proximity of the border were strong, reducing badger density even below the expected density outside the reserve. Edge effects should be considered carefully when reserves are implemented because they can greatly reduce reserve effectiveness and influence the viability of the populations inside. Enlargement of reserves and control of human activities that promote edge effects, both inside and outside the reserve, are the two management actions that can most effectively mitigate edge effects.  相似文献   

3.
While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap Analysis Programs (GAP) to produce 1-km2, 100-kmn2, 625-km2, 2500-km2, and 10,000-km2 grid cell resolution distribution maps. We used these distribution maps to generate species richness and hotspot (95th quantile) maps for each taxon in each state. Species composition information at each grain size was used to develop two types of representation networks using the reserve selection software MARXAN. Reserve selection analyses were restricted to Arizona birds due to considerable computation requirements. We used MARXAN to create best reserve networks based on the minimum area required to represent each species at least once and equal area networks based on irreplaceability values. We also measured the median area of each species' distribution included in hotspot (mammals and birds of Arizona and New Mexico) and irreplaceability (Arizona birds) networks across all species. Mean area overlap between richness hotspot reserves identified at the five grain sizes was 29% (grand mean for four within-taxon/state comparisons), mean overlap for irreplaceability reserve networks was 32%, and mean overlap for best reserve networks was 53%. Hotspots for mammals and birds showed low overlap with a mean of 30%. Comparison of hotspots and irreplaceability networks showed very low overlap with a mean of 13%. For hotspots, median species distribution area protected within reserves declined monotonically from a high of 11% for 1-km2 networks down to 6% for 10,000-km2 networks. Irreplaceability networks showed a similar, but more variable, pattern of decline. This work clearly shows that map resolution has a profound effect on conservation planning outcomes and that hotspot and representation outcomes may be strikingly dissimilar. Thus, conservation planning is scale dependent, such that reserves developed using coarse-grained data do not subsume fine-grained reserves. Moreover, preserving both full species representation and species rich areas may require combined reserve design strategies.  相似文献   

4.
To study the effect of habitat fragmentation on population viability, I used extinction rates on islands in archipelagoes and estimated the relative probability of extinction per species on single large islands and sets of smaller islands with the same total area. Data on lizards, birds, and mammals on oceanic islands and mammals on mountaintops and in nature reserves yield similar results. Species are likely to go extinct on all the small islands before they go extinct on the single, large island. In the short term, the analysis indicates that extinction probabilities may be lower on a set of small islands. This is perhaps an artifact due to underestimation of extinction rates on small islands and/or the necessity of pooling species in a focal taxon to obtain estimates of extinction rates (which may obscure area thresholds and underestimate the slope and curvature of extinction rates as a function of area). Ultimately, cumulative extinction probabilities are higher for a set of small islands than for single large islands. Mean and median times to extinction tend to be shorter in the fragmented systems, in some cases much shorter. Thus, to minimize extinction rates in isolated habitat remnants and nature reserve systems, the degree of fragmentation should be minimized  相似文献   

5.
Usefulness of the Umbrella Species Concept as a Conservation Tool   总被引:20,自引:0,他引:20  
Abstract:  In the face of limited funding, knowledge, and time for action, conservation efforts often rely on shortcuts for the maintenance of biodiversity. The umbrella species concept—proposed as a way to use species requirements as a basis for conservation planning—has recently received growing attention. We reviewed the literature to evaluate the concept's general usefulness. An umbrella species is defined as a species whose conservation is expected to confer protection to a large number of naturally co-occurring species. This concept has been proposed as a tool for determining the minimum size for conservation areas, selecting sites to be included in reserve networks, and setting minimum standards for the composition, structure, and processes of ecosystems. Among the species suggested as potential umbrellas, most are large mammals and birds, but invertebrates are increasingly being considered. Eighteen research papers, most of which were based on hypothetical reserves or conservation networks, have provided evaluations of umbrella species schemes. These show that single-species umbrellas cannot ensure the conservation of all co-occurring species because some species are inevitably limited by ecological factors that are not relevant to the umbrella species. Moreover, they provide evidence that umbrella species from a given higher taxon may not necessarily confer protection to assemblages from other taxa. On the other hand, multi-species strategies based on systematic selection procedures (e.g., the focal species approach) offer more compelling evidence of the usefulness of the concept. Evaluations of umbrella species schemes could be improved by including measures of population viability and data from many years, as well as by comparing the efficiency of the proposed scheme with alternative management strategies.  相似文献   

6.
A major goal of conservation biologists is to identify critical areas for the conservation of biological diversity and then strategically include them in an efficient system of reserves. In general, however, reserve networks have been selected for different objectives, and most countries lack an evaluation of their reserves' ability to represent a percentage of the national diversity. This paper evaluates the effectiveness of a network of reserves to represent the species of mammals in Mexico. The focus of the analyses is on species and site level, evaluating the representation of all terrestrial mammals in the 30 most important reserves. The representation of all species, endemic species, endangered species, and species with restricted distributions in the reserves was assessed and compared. Endemic or endangered species with restricted distributions were expected to be less represented in reserves than were widespread species. The most important reserves for the conservation of mammals were determined with the use of complementarity analyses. Priority sites for the representation of all the species currently absent from the reserve network were then selected. The results have broad applications for conservation. First, 82% of the mammal species from Mexico were represented in the reserve network, which covers a small portion (3.8%) of the country. Second, this percentage is certainly larger as several reserves were not evaluated due to a lack of data. A priority for a national conservation strategy could be to conduct biological surveys in those reserves lacking inventories to evaluate their contribution to conservation. Third, in spite of its demonstrated value, Mexico's reserve network can be improved by designating complementary areas. Additional priority sites, where reserves are required to represent most gap species in the network, were identified. Finally, it is clear that this reserve network has limitations for maintaining biodiversity and ecosystem services at regional scales. A comprehensive conservation strategy has, therefore, to incorporate mechanisms that enhance the value of human-dominated landscapes for the maintenance of biodiversity.  相似文献   

7.
No-take reserves are sometimes implemented for sustainable population harvesting because they offer opportunities for animals to spatially avoid harvesters, whereas harvesters can benefit in return from the reserve spillover. Here, we used the framework of predator-prey spatial games to understand how protected areas shape spatial interactions between harvesters and target species and determine animal mortality. In these spatial games, the "predator" searches for "prey" and matches their habitat use, unless it meets spatial constraints offering the opportunity for prey to avoid the mortality source. However, such prey refuges could attract predators in the surroundings, which questions the potential benefits for prey. We located, in the Geneva Basin (France), hunting dogs and wild boar Sus scrofa L. during hunting seasons with global positioning systems and very-high-frequency collars. We quantified how the proximity of the reserve shaped the matching between both habitat uses using multivariate analyses and linked these patterns to animals' mortality with a Cox regression analysis. Results showed that habitat uses by both protagonists disassociated only when hunters were spatially constrained by the reserve. In response, hunters increased hunting efforts near the reserve boundary, which induced a higher risk exposure for animals settled over the reserve. The mortality of adult wild boar decreased near the reserve as the mismatch between both habitat uses increased. However the opposite pattern was determined for younger individuals that suffered from the high level of hunting close to the reserve. The predator-prey analogy was an accurate prediction of how the protected area modified spatial relationships between harvesters and target species. Prey-searching strategies adopted by hunters around reserves strongly impacted animal mortality and the efficiency of the protected area for this harvested species. Increasing reserve sizes and/or implementing buffer areas with harvesting limitations can dampen this edge effect and helps harvesters to benefit durably from source populations of reserves. Predator-prey spatial games therefore provide a powerful theoretical background for understanding wildlife-harvester spatial interactions and developing substantial application for sustainable harvesting.  相似文献   

8.
Protected Areas and Prospects for Endangered Species Conservation in Canada   总被引:3,自引:0,他引:3  
Abstract:  Reserve networks figure prominently in conservation strategies that aim to reduce extinction rates. We tested the effectiveness of the current reserve network at protecting species at risk in Canada, where relatively extensive wilderness areas remain. We compared numbers of terrestrial species at risk included in existing reserves to randomly generated networks with the same total area and number of reserves. Existing reserve networks rarely performed better than randomly selected areas and several included fewer endangered species than expected by chance, particularly in the most biologically imperiled regions. The extent of protected area and density of species at risk were unrelated at either broad (countrywide) or finer spatial scales (50 × 50 km grids), although there was a tendency for the most threatened regions of the country to have few or no protected areas (1.5% of areas with >30 endangered species were in reserves). Although reserves will play a useful role in conserving endangered species that occur within them, reducing extinction rates in a region with much of the world's remaining wilderness will require integrating conservation strategies with agricultural and urban land-use plans outside formally protected areas.  相似文献   

9.
Abstract:  Distribution data on biodiversity features is a major component of conservation planning that are often inaccurate; thus, the true distribution of each feature is commonly over- or underrepresented. The selection of distribution data sets may therefore lead to variability in the spatial configuration and size of proposed reserve networks and uncertainty regarding the extent to which these networks actually contain the biodiversity features they were identified to protect. Our goals were to investigate the impact on reserve selection of choosing different distribution data sets and to propose novel methods to minimize uncertainty about target attainment within reserves. To do so, we used common prioritization methods (richness mapping, systematic reserve design, and a novel approach that integrates multiple types of distribution data) and three types of data on the distribution of mammals (predicted distribution models, occurrence records, and a novel combination of the two) to simulate the establishment of regional biodiversity reserves for the state of Arizona (U.S.A.). Using the results of these simulations, we explored variability in reserve placement and size as a function of the distribution data set. Spatial overlap of reserve networks identified with only predicted distribution data or only occurrence distribution data never exceeded 16%. In pairwise comparisons between reserves created with all three types of distribution data, overlap never achieved 50%. The reserve size required to meet conservation targets also varied with the type of distribution data used and the conservation goal; the largest reserve system was 10 times the smallest. Our results highlight the impact of employing different types of distribution data and identify novel tools for application to existing distribution data sets that can minimize uncertainty about target attainment.  相似文献   

10.
Increasing the density of natural reserves in the forest landscape may provide conservation benefits for biodiversity within and beyond reserve borders. We used 2 French data sets on saproxylic beetles and landscape cover of forest reserves (LCFR) to test this hypothesis: national standardized data derived from 252 assessment plots in managed and reserve stands in 9 lowland and 5 highland forests and data from the lowland Rambouillet forest, a forested landscape where a pioneer conservation policy led to creation of a dense network of reserves. Abundance of rare and common saproxylic species and total saproxylic species richness were higher in forest reserves than in adjacent managed stands only in highland forests. In the lowland regional case study, as LCFR increased total species richness and common species abundance in reserves increased. In this case study, when there were two or more reserve patches, rare species abundance inside reserves was higher and common species richness in managed stands was higher than when there was a single large reserve. Spillover and habitat amount affected ecological processes underlying these landscape reserve effects. When LCFR positively affected species richness and abundance in reserves or managed stands, >12‐20% reserve cover led to the highest species diversity and abundance. This result is consistent with the target of 17% forested land area in reserves set at the Nagoya biodiversity summit in 2010. Therefore, to preserve biodiversity we recommend at least doubling the current proportion of forest reserves in European forested landscapes.  相似文献   

11.
Abstract:  The limited availability of resources for conservation has led to the development of many quantitative methods for selecting reserves that aim to maximize the biodiversity value of reserve networks. In published analyses, species are often considered equal, although some are in much greater need of protection than others. Furthermore, representation is usually treated as a threshold: a species is either represented or not, but varying levels of representation over or under a given target level are not valued differently. We propose that a higher representation level should also have higher value. We introduce a framework for reserve selection that includes species weights and benefit functions for under- and overrepresentation (number of locations for each species). We applied the method to conservation planning for herb-rich forests in southern Finland. Our use of benefit functions and weighting changed the identity of about 50% of the selected sites at different funding levels and improved the representation of rare and threatened species. We also identified a small area of additional land that would substantially enhance the existing reserve network. We suggest that benefit functions and species weighting should be considered as standard options in reserve-selection applications.  相似文献   

12.
For marine organisms, decoupling between the planktonic larval stage and the benthic-associated juvenile stage can lead to variable patterns of population replenishment, which have the potential to influence the effectiveness of marine reserves. We measured spatial and temporal variability in larval supply and recruitment of fishes to coral reefs of different protection levels and tested whether protection level influenced the relationship between supply and recruitment. We sampled pre-settlement larvae and newly settled recruits from four reefs (two reserves and two non-reserves) in the Florida Keys National Marine Sanctuary, USA. Replicate point measures of larval supply over 14 months and 17 monthly measurements of recruitment varied significantly among months and sites. Sites with the same protection level had significantly different patterns of larval supply as well as larval and recruit diversity, but recruitment magnitude differed only by protection level, where densities were greater at reserves. Differences in larval supply among sites included two particularly large peaks in larval abundance at one site, possibly associated with the observed passage of small-scale oceanographic features. To examine whether relationships between larval supply and recruitment varied by protection level, we selected one species that was present in both the light trap samples and the monthly recruitment surveys. Recruitment of the bicolor damselfish Stegastes partitus was significantly and positively related to larval supply at three of the four sites thus, protection level did not influence this linkage. Since local variability among sites can lead to spatial differences in population replenishment, characterization of larval supply and recruitment to potential marine reserve sites may help to identify optimal locations in a region and contribute to more effective reserve design.  相似文献   

13.
Ecological distance-based spatial capture–recapture models (SCR) are a promising approach for simultaneously estimating animal density and connectivity, both of which affect spatial population processes and ultimately species persistence. We explored how SCR models can be integrated into reserve-design frameworks that explicitly acknowledge both the spatial distribution of individuals and their space use resulting from landscape structure. We formulated the design of wildlife reserves as a budget-constrained optimization problem and conducted a simulation to explore 3 different SCR-informed optimization objectives that prioritized different conservation goals by maximizing the number of protected individuals, reserve connectivity, and density-weighted connectivity. We also studied the effect on our 3 objectives of enforcing that the space-use requirements of individuals be met by the reserve for individuals to be considered conserved (referred to as home-range constraints). Maximizing local population density resulted in fragmented reserves that would likely not aid long-term population persistence, and maximizing the connectivity objective yielded reserves that protected the fewest individuals. However, maximizing density-weighted connectivity or preemptively imposing home-range constraints on reserve design yielded reserves of largely spatially compact sets of parcels covering high-density areas in the landscape with high functional connectivity between them. Our results quantify the extent to which reserve design is constrained by individual home-range requirements and highlight that accounting for individual space use in the objective and constraints can help in the design of reserves that balance abundance and connectivity in a biologically relevant manner.  相似文献   

14.
Establishing protected areas (PAs) is an essential strategy to reduce biodiversity loss. However, many PAs do not provide adequate protection due to poor funding, inadequate staffing and equipment, and ineffective management. As part of China's recent economic growth, the Chinese government has significantly increased investment in nature reserves over the past 20 years, providing a unique opportunity to evaluate whether PAs can protect threatened species effectively. We compiled data from published literature on populations of gibbons (Hylobatidae), a threatened taxon with cultural significance, that occurred in Chinese reserves after 1980. We evaluated the ability of these PAs to maintain gibbon habitat and populations by comparing forest cover and human disturbance between reserves and their surrounding areas and modeling the impact of reserve characteristics on gibbon population trends. We also assessed the perspective of reserve staff concerning PA management effectiveness through an online survey. Reserves effectively protected gibbon habitat by reducing forest loss and human disturbance; however, half the reserves lost their gibbon populations since being established. Gibbons were more likely to survive in reserves established more recently, at higher elevation, with less forest loss and lower human impact, and that have been relatively well studied. A larger initial population size in the 1980s was positively associated with gibbon persistence. Although staff of all reserves reported increased investment and improved management over the past 20–30 years, no relationship was found between management effectiveness and gibbon population trends. We suggest early and emphatic intervention is critical to stop population decline and prevent extinction.  相似文献   

15.
Abstract: A common objective of methods of systematic reserve selection has been to maximize conservation benefits—frequently current species richness—while reducing the costs of acquiring and maintaining reserves. But the probability that a reserve will lose species in the future is frequently not known because the minimum area requirements for most species have not been estimated empirically. For reserves within the Alleghenian-Illinoian mammal province of eastern North America, we empirically estimated the minimum area requirement of terrestrial mammals such that reserves should not lose species because of insularization. We compared this estimate to the actual size of 2355 reserves and reserve assemblages within the mammal province. The estimated minimum area requirement was 5037 km2 (95% CI: 2700–13,296 km2). Fourteen reserves and reserve assemblages were> 2700 km2, 9 were> 5037 km2, and 3 were> 13,296 km2. These 14 reserves accounted for 73% of the total area of reserves and 10% of the total area of the mammal province. Few reserves appear large enough to avoid loss of some mammal species without the additional cost of active management of habitat or populations. Immigration corridors and buffer zones that combine small reserves into assemblages totaling at least 2700 km2 may be the most efficient means of conserving mammals in these reserves.  相似文献   

16.
Although many papers report the effects of no-take marine protected areas (MPAs or reserves), scientifically rigorous empirical studies are rare, particularly for temperate reef fishes. We evaluated the responses of fish populations to protection from fishing in reserves by comparing densities and sizes inside and outside of five no-take reserves in southern California, USA. Our results are robust because we compared responses across multiple rocky-reef reserves in two different years and controlled for possible site differences by (a) ensuring that habitat characteristics were the same inside and outside reserves, and (b) sampling species that are not targeted, which would not be expected to have a direct response to fishing. We compared fish density and size and calculated biomass and egg production across all five sites. Fishes targeted by recreational and/or commercial fisheries consistently exhibited increases in mean density (150%), size (30%), biomass (440%), and egg production (730%) inside reserves. Reserve effects were greatest for legal-sized targeted fishes: significantly greater densities were found exclusively inside reserves for targeted species (580%), the largest size classes existed only inside reserves, and mean biomass was 1000% higher. These responses were unlikely to have been caused by habitat differences because there were no significant differences in habitat characteristics between reserve and control locations. Densities of non-targeted species did not differ between reserve and non-reserve locations, further supporting the conclusions that differences in targeted species between reserve and control locations were due to harvesting rather than site-specific effects. Although MPAs cannot replace traditional fisheries management, the concentration of increased biomass and egg production is a unique MPA benefit that serves both reserves and fisheries. Scientifically rigorous studies that include multiple reserves, such as this study, are needed to inform management and policy decisions.  相似文献   

17.
Abstract:  Aggregation of reserve networks is generally considered desirable for biological and economic reasons: aggregation reduces negative edge effects and facilitates metapopulation dynamics, which plausibly leads to improved persistence of species. Economically, aggregated networks are less expensive to manage than fragmented ones. Therefore, many reserve-design methods use qualitative heuristics, such as distance-based criteria or boundary-length penalties to induce reserve aggregation. We devised a quantitative method that introduces aggregation into reserve networks. We call the method the boundary-quality penalty (BQP) because the biological value of a land unit (grid cell) is penalized when the unit occurs close enough to the edge of a reserve such that a fragmentation or edge effect would reduce population densities in the reserved cell. The BQP can be estimated for any habitat model that includes neighborhood (connectivity) effects, and it can be introduced into reserve selection software in a standardized manner. We used the BQP in a reserve-design case study of the Hunter Valley of southeastern Australia. The BQP resulted in a more highly aggregated reserve network structure. The degree of aggregation required was specified by observed (albeit modeled) biological responses to fragmentation. Estimating the effects of fragmentation on individual species and incorporating estimated effects in the objective function of reserve-selection algorithms is a coherent and defensible way to select aggregated reserves. We implemented the BQP in the context of the Zonation method, but it could as well be implemented into any other spatially explicit reserve-planning framework .  相似文献   

18.
Biological sampling in marine systems is often limited, and the cost of acquiring new data is high. We sought to assess whether systematic reserves designed using abiotic domains adequately conserve a comprehensive range of species in a tropical marine inter‐reef system. We based our assessment on data from the Great Barrier Reef, Australia. We designed reserve systems aiming to conserve 30% of each species based on 4 abiotic surrogate types (abiotic domains; weighted abiotic domains; pre‐defined bioregions; and random selection of areas). We evaluated each surrogate in scenarios with and without cost (cost to fishery) and clumping (size of conservation area) constraints. To measure the efficacy of each reserve system for conservation purposes, we evaluated how well 842 species collected at 1155 sites across the Great Barrier Reef seabed were represented in each reserve system. When reserve design included both cost and clumping constraints, the mean proportion of species reaching the conservation target was 20–27% higher for reserve systems that were biologically informed than reserves designed using unweighted environmental data. All domains performed substantially better than random, except when there were no spatial or economic constraints placed on the system design. Under the scenario with no constraints, the mean proportion of species reaching the conservation target ranged from 98.5% to 99.99% across all surrogate domains, whereas the range was 90–96% across all domains when both cost and clumping were considered. This proportion did not change considerably between scenarios where one constraint was imposed and scenarios where both cost and clumping constraints were considered. We conclude that representative reserve systems can be designed using abiotic domains; however, there are substantial benefits if some biological information is incorporated.  相似文献   

19.
The present dispersion of nature reserves in South Africa is the historical result of a series of ad hoc decisions and may not be biologically optimal We have adopted a method to identify the optimal geography of nature reserves for the conservation of South Africa's snake fauna. The method of reserve selection operated on two tiers, and the spatial unit of analysis was a quarter-degree-square cell (∼625 km2). First, two scoring indices were used to rank cells with respect to species richness or to rarity. Second, two different iterative reserve-selection algorithms selected sets of cells (reserves), where each set represented all snake species at least once. Finally, the selected cells were examined for their present level of protection and their ranked scores. Depending on the algorithm chosen, only 23 or 29 cells were required to represent all species at least once; 72–78% of these cells already contained some level of protection; 59–70% of cells fell in areas of high species richness; and 72–91% of cells fell in areas with high rarity scores. Thus we conclude that most of the snake species in South Africa may be adequately protected with only modest acquisition of new reserves, and that the iterative algorithms appear to be efficient at siting cells in areas of high richness and rarity. We recommend that the reserve placement method outlined in this report be applied to as many other taxa as possible in the formulation of a national plan for an optimal reserve system for South Africa.  相似文献   

20.
When reserve networks are established over time, there is a risk that sites will be developed in areas planned for future reservation, reducing the effectiveness of reserves. We developed a dynamic reserve design model that maximizes the expected number of species conserved, taking account of the risk of future habitat loss and fragmentation. The model makes use of the union-find algorithm, which is an efficient method for maintaining a list of connected regions in a graph as nodes and edges are inserted. A simple extension of the algorithm allows us to efficiently determine, for each species, when a sequence of site selections results in a reserve in which the species can persist. The extension also allows us to determine when a sequence of deforestation events results in the species becoming non-viable. The dynamic reserve design model is much more effective than commonly used heuristics, particularly when multiple connected sites are required for species persistence. The model also is able to solve much larger problems with greater effectiveness than the only previous dynamic reserve design model that considered site connectivity relationships. The union-find algorithm has much scope for addressing ecological management problems in which dynamic connectivity needs to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号