首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 184 毫秒
1.
分析了用碱性过硫酸钾消解紫外分光光度法测试清洁水体水质总氮过程中不确定度和系统误差的来源,对各不确定度分量进行评定及合成,并计算得出合成不确定度和扩展不确定度。提出了不确定度的评定一定要在消除了系统误差的前提下进行,故本测试水体总氮含量为0.67-(-0.12)±0.04mg/L。结果表明:标准曲线拟合、标准溶液配制过程引入的不确定度可以忽略不计,对本测试方法影响最大的不确定度分量是比色过程中的试剂空白读值所引起的相对不确定度;其次样品操作过程移取样品用的吸管精度。  相似文献   

2.
根据《测量不确定度评定与表示》(JJF 1059.1-2012),建立了实验室电位滴定仪测定水中氯化物不确定度数学模型,分析了整个过程各种不确定度的影响因素,量化各不确定度分量,计算合成不确定度和扩展不确定度.本次测量结果为(110±6.18) mg/L,合成相对不确定度值为0.028 1,扩展不确定度为6.18 mg/L.电位滴定仪测定氯化物的不确定度主要来源是样品重复测定和滴定终点体积读数.  相似文献   

3.
根据(JJF1059—1999),建立了原子吸收法测定污泥泥质中锌不确定度数学模型,分析了测试过程中不确定度的来源,并对各不确定度分量进行评定及合成,并计算得出合成不确定度和扩展不确定度。本次测量的合成相对不确定度值为0.022,其中由消化样浓度引起的相对合成不确定度为0.021;最大的不确定度分量是标准曲线拟合的不确定度,分量值为0.0134,其次是样品消化重复测定的不确定度,分量值为0.011。本次测定结果为(644.6±28.4)mg/kg;k=2(置信水平95%)  相似文献   

4.
赵红叶 《环境科学与管理》2007,32(7):147-148,151
根据火焰原子吸收分光光度法测定水中的铜含量,分析主要的测量不确定度来源,即标准曲线不确定度、标准溶液不确定度、测量重复性不确定度.计算得到水中铜的测定结果的合成不确定度为0.098mg/L,扩展不确定度为0.196mg/L.  相似文献   

5.
水质五日生化需氧量测量的关键是用碘量法测水中溶解氧的含量,经过分析碘量法测定水中溶解氧含量测量不确定度的影响因素,认为测量的重复性的不确定度分量最大,其次是样品中溶液的体积,滴定溶液的体积和滴定溶液的浓度等不确定度分量.计算得到水中五日生化需氧量的测定结果的合成不确定度为6.4mg/L,扩展不确定度为12.8mg/L.  相似文献   

6.
检验检测实验室应对测量结果的不确定度进行分析,本文以离子色谱法测定水中亚硝酸盐为例,通过建立数学模型,找出影响不确定度因素,确定不确定度分量,并合成计算出扩展不确定度。结果表明,标准溶液系列配制过程和校准曲线拟合引入的不确定度是不确定度的主要来源。当置信水平为95%时,亚硝酸盐的扩展不确定度为0.042 mg/L。  相似文献   

7.
刘格辛  丘露 《环境》2012,(Z1):5-6
采用吹扫捕集-气相色谱/质谱联用法测定水中的氯苯,通过建立数学模型,分析不确定度的主要来源及各不确定度的关系,对各不确定度的分量进行评定,将不确定度分量合成。结果表明,样品测定过程中重复性引起的不确定度所占权重最大,其次是拟合标准工作曲线和载气流量所引起的不确定度,当水中氯苯含量为2.50μg/L时,该分析方法合成不确定度为0.097μg/L,扩展不确定度为0.19μg/L。  相似文献   

8.
由于测量不确定度便于使用、易于掌握,已被普遍认可作为表征测量结果质量的表达方式。运用红外分光测油仪测量标准样品石油类含量,对所有不确定度分量进行了量化,并找出测量不确定度的来源,从而计算其测量合成相对标准不确定度和扩展不确定度。结果表明:标准样品中石油类的测量结果为20.03 mg/L,扩展不确定度为0.42 mg/L(k=2);扩展不确定度贡献较大的主要分量有:加标回收率、样品重复测定和稀释过程引入的标准不确定度分量。  相似文献   

9.
根据JJF 1059-1999,建立了原子荧光光谱法测定化妆品中汞不确定度数学模型,分析了测试过程中不确定度的来源,并对各不确定度分量进行量化,本次测定的合成相对不确定度为0.045;其中由消化液浓度引起相对不确定度为0.0448,样品消化定容体积引入不确定度0.00058,称量样品质量引入的不确定度0.00059.最大的不确定度分量是样品消化重复测定,其相对不确定度分量值为0.043,其次为标准曲线拟合的相对不确定度,分量值为0.0064,本次测定结果为0.513±0.046 mg/kg;k=2(置信水平95%)  相似文献   

10.
合理评定测量结果的不确定度是分析实验室必须重视的问题。通过酸性高锰酸钾氧化法测定水中高锰酸盐指数的实例,确立高锰酸盐指数测量的不确定度数学模型。讨论了高锰酸盐指数测定值不确定度的各种因素,对各不确定度分量进行分析和量化,求得其扩展不确定度。结果表明,影响其测量不确定度的主要因素是测量熏复性。在高锰酸盐指数值为4.17 mg/L的水样测定中,扩展不确定度为0.08 mg/L。  相似文献   

11.
河南省土壤库中钾养分资源状况的研究   总被引:7,自引:0,他引:7  
通过对河南省1995年取得的1130个土样进行了土壤全钾、速效钾和缓效钾的测定 ,并同第二次土壤普查 (1985年 )的结果进行了比较。表明河南省土壤速效钾含量平均为102 6mg/kg,与第二次土壤普查相比下降了30 4mg/kg,年平均下降3 04mg/kg;以豫东区土壤速效钾含量下降最多 ,为46 5 % ,豫中区下降最少 ,仅为6 8 %。土壤缓效钾含量低的仅为177 5mg/kg,高的达2553mg/kg,平均为863mg/kg。土壤全钾平均含量为17 2g/kg,也下降了10 4 % ;下降幅度最大的为潮土达16 9 % ,褐土下降最低为0 5 %。  相似文献   

12.
石墨炉原子吸收法测定室内积尘中铅含量不确定度评定   总被引:1,自引:0,他引:1  
通过采集南宁市居民室内积尘,采用石墨炉原子吸收法进行铅含量的测定,根据JJF1059—1999〈〈测量不确定度评定与表示》对影响测量结果的不确定度分量进行了量化的计算,结果表明影响铅含量测定不确定度的主要因素为试样制备和校准曲线绘制,在该样品铅含量测定中,室内积尘中铅含量为21.4mg/kg,其扩展不确定度±2.78ms/kg。  相似文献   

13.
乙酸铵交换法测定土壤阳离子交换量的不确定度评定研究   总被引:1,自引:0,他引:1  
采用乙酸铵交换法测定土壤阳离子交换量,并分析了测量过程中不确定度的来源:样品和标准物质的称量,容量瓶、移液管和滴定管的体积,以及测量的重复性等.在此基础上对各不确定度分量进行评定,并计算得到合成不确定度和扩展不确定度.最后提出了在测定过程中减小不确定度的有效途径,认为乙酸铵交换法测定土壤阳离子交换量的结果不确定度主要来源于重复性测定,增加测量次数可以减小重复性的不确定度,从而降低测定不确定度.当土壤中阳离子交换量为22.5 cmol(+)/kg时,扩展不确定度为1.0 cmol(+)/kg,置信水平为95%.  相似文献   

14.
南四湖微山湖区沉积物磷形态分布特征   总被引:23,自引:8,他引:15  
为了解南四湖污染底泥磷形态分布规律,对南四湖微山湖区0~25 cm沉积物分层进行了磷形态连续提取.结果表明,湖区沉积物中Ex-P、Al-P、Fe-P、Oc-P、Ca-P、De-P和Org-P平均含量分别为5.62、 4.08、 12.25、 13.34、 116.67、 232.36和396.79 mg/kg,不同形态磷含量次序为:Al-P<Ex-P<Fe-P<Oc-P<Ca-P<De-P<Org-P.沉积物中各形态磷含量在垂直方向上呈现明显的规律性,易交换态磷(Ex-P)、铁结合态磷(Fe-P)、闭蓄态磷(Oc-P)、有机磷(Org-P)含量随深度增加而逐渐降低,而铝结合态磷(Al-P)、钙结合态磷(Ca-P)、碎屑磷(De-P)含量则呈逐渐增加趋势.Sum1(Ex-P、Al-P、Fe-P之和)与上覆水PO3-4浓度呈显著正相关,其中Fe-P与水体磷酸盐含量关系相对比较密切,其相关系数高达0.72.沉积物磷形态在空间分布上,Oc-P、Ca-P、De-P 等惰性磷的差异性小于Ex-P、Al-P、Fe-P等潜在活性磷,Org-P介于二者之间.  相似文献   

15.
通过实例对原子荧光法测定海水中硒的不确定度进行评定。根据(JJF 1059-1999)《测量不确定度评定与表示》中对测量和评定不确定度的要求评估了不确定度。测量不确定度的产生包括标准溶液的逐级稀释、工作曲线的非线性和原子荧光光度计的测量性能及取样体积。结果表明取样体积是导致该方法不确定度产生的主要影响因素,在测定时应加强这方面的控制,从而提高测量结果的准确性。当海水中硒的含量为1.99μg/L时,硒含量的扩展不确定度为0.40μg/L,置信水平为95%。  相似文献   

16.
离子色谱法测定环境水样中的氨氮   总被引:1,自引:0,他引:1  
使用离子色谱分析地表水、地下水、饮用水源等环境水样中的氨氮,以甲磺酸为流动相,采用等度淋洗,进一次样品可同时检测其它多种阳离子,操作方便,考察了方法的精密度和准确度,并对氨氮标准曲线进行了简要分析,氨氮定量范围为0.04 mg/l~15 mg/l,可满足环境监测要求。  相似文献   

17.
水稻土重金属空间分布的随机模拟和不确定评价   总被引:11,自引:0,他引:11  
史舟  李艳  程街亮 《环境科学》2007,28(1):209-214
以杭嘉湖平原为样区,利用普通克立格法和序贯高斯模拟方法对土壤Cu的空间分布进行估值和模拟,并利用序贯指示模拟进行不确定性评价.结果表明,样区北部区域土壤Cu含量较高.由普通克里格法得到的土壤Cu的空间分布整体比较连续,具有明显的平滑效应,估值结果数据的分布频率趋于平缓.序贯高斯模拟结果整体分布相对离散,突出了原始数据分布的波动性,其模拟结果数据的分布频率相对集中.以35 mg·kg-1作为土壤Cu含量的阈值进行的序贯指示模拟结果显示,在土壤Cu含量较高的北部地区超过阈值的概率超过80%,而南部很多相对含量低的地区该概率值都低于10%.以超阈值概率为0.85和0.75来选取Cu的高污染风险区进行空间不确定评价结果表明,联合概率比单点统计的概率更为严格,在划分较大范围污染区域时,最好同时采用联合概率来进行信度评价.  相似文献   

18.
Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides and so on. The Shenyang Zhangshi irrigation area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years duration. This study investigated the spatial distribution and temporal variation of soil cadmium contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd of soils was analyzed and then the spatial distribution and temporal variation of Cd in soils was modelled using kriging methods. The kriging map showed that long-term sewage irrigation had caused serious Cd contamination in topsoil and subsoil. In 2004, the Cd mean concentrations were 1.698 and 0.741 mg/kg, and the maxima 10.150 and 7.567 mg/kg in topsoils (0-20 cm) and subsoils (20-40 cm) respectively. These values are markedly more than the Cd levels in the second grade soil standard in China. In 1990, the Cd means were 1.023 and 0.331 mg/kg, and the maxima 9.400 and 3.156 mg/kg, in topsoils and subsoils respectively. The soil area in 1990 with Cd more than 1.5 mg/kg was 2701 and 206.4 hnl2 in topsoils and subsoils respectively; and in 2004, it was 7592 and 1583 hm^2, respectively. Compared with that in 1990, the mean and maximum concentration of Cd, as well as the soil area with Cd more than 1.5 mg/kg had all increased in 2004, both in topsoils and subsoils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号