首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of life cycle assessment (LCA) as a sustainability assessment tool for agro-bioenergy system usually has an industrial agriculture bias. Furthermore, LCA generally has often been criticized for being a decision maker tool which may not consider decision takers perceptions. They are lacking in spatial and temporal depth, and unable to assess sufficiently some environmental impact categories such as biodiversity, land use etc. and most economic and social impact categories, e.g. food security, water security, energy security. This study explored tools, methodologies and frameworks that can be deployed individually, as well as in combination with each other for bridging these methodological gaps in application to agro-bioenergy systems. Integrating agronomic options, e.g. alternative farm power, tillage, seed sowing options, fertilizer, pesticide, irrigation into the boundaries of LCAs for agro-bioenergy systems will not only provide an alternative agro-ecological perspective to previous LCAs, but will also lead to the derivation of indicators for assessment of some social and economic impact categories. Deploying life cycle thinking approaches such as energy return on energy invested-EROEI, human appropriation of net primary production-HANPP, net greenhouse gas or carbon balance-NCB, water footprint individually and in combination with each other will also lead to further derivation of indicators suitable for assessing relevant environmental, social and economic impact categories. Also, applying spatio-temporal simulation models has a potential for improving the spatial and temporal depths of LCA analysis.  相似文献   

2.
The organic carbon, permeability test, grain size, chemical composition, and mineral composition were analyzed for 147 samples collected from the Luan River catchment, Hebei province, China, to quantitatively characterize the effects of land use, climate change, sedimentary environment, mineral composition, and chemical composition on the spatial and temporal variation of soil organic carbon (SOC). The results indicate that there was higher SOC content and stronger variation in the south plain than in the northern low mountain. The effects of land use, climate change, and sedimentary environment on SOC distribution were greater than the effects of mineral composition and chemical composition. The cropping systems in the Luan River catchment resulted in significant difference in SOC concentration between the south plain and north mountain. The precipitation mainly transmitted its effects through the sedimentary environment to SOC, which caused the stronger temporal variation in SOC from June to October in the south plain. The north mountain did not have significant temporal variation because of the lower hydraulic conductivity of the sedimentary sequence. The spatial variation of SOC was correlated with land use, and their temporal variation was attributed to climate change and sedimentary environment. Apart from land use, the decision maker can also affect the organic carbon mineral and sequence through the sedimentary environment.  相似文献   

3.
Global Warming Potential (GWP) is an index used to measure the cumulative radiative forcing of a tonne of greenhouse house gas (GHG) relative to that of a ‘reference’ gas (CO2). Under the Kyoto Protocol, GWP can be used as a fixed index to govern the trade-off between different GHGs in a multi-gas approach to GHGs abatement. The use of fixed GWPs has been criticized for not being very cost effective compared to the use of some flexible indices. To gain wider acceptance, however, a flexible index must also prove to be easy to use, and the economic gains from its adoption must be significant. In this paper, we develop a flexible index based on the concept of marginal rather than cumulative or average global warming potentials. These marginal global warming potentials (MGWPs) can be endogenously determined within a climate model given a particular climate objective based on radiative forcing level. The MGPWs are then linked to the marginal abatement costs of the GHGs, which are also endogenously determined within an economic model. When the two concepts are linked in this way, the result is a cost-effective way of achieving a particular climate change objective with multigas abatement. We show that the savings in costs when using this flexible MGPWs can be significant, and more importantly, they are not uniformly distributed across different regions.
Claudia KemfertEmail:
  相似文献   

4.
不同尺度下温室气体的空间分布及变化趋势是研究气候变化的基础,也是评估相关减排政策实施效果的重要依据。当前碳排放核算主要基于排放清单,不确定性较大。基于监测数据的碳排放核算能够有效评估和修正排放清单结果,是对当前方法的有效补充。国内温室气体的监测主要针对污染源和环境浓度,对于人为源温室气体排放通量的监测研究较少。该文分析了近年来国内外基于地基监测的人为源温室气体排放通量研究,主要的研究方法可分为2类:柱浓度空间分布结合三维风场数据反演排放通量;结合实测体积分数、大气扩散模型和统计优化模型修正先验排放通量结果,以获取更准确的后验排放通量。通过分析和对比2种方法的优势和局限,讨论不同通量反演方法的适用场景。建议我国未来应构建适用于不同空间尺度的温室气体通量监测反演体系,综合利用多种监测手段,以校核验证排放清单,并为制定温室气体减排策略和评估应对气候变化工作成效提供技术支撑。  相似文献   

5.
“双碳”目标下,温室气体在线长期稳定监测技术是全面掌握温室气体排放及其环境、气候效应,并预测未来变化趋势的重要保障。为了实时在线监测工业生产现场等环境温室气体浓度及其变化趋势,及时采取相应措施,在分析光声光谱信号产生机理及多组分气体混合监测原理的基础上,根据温室气体的主要成分,分析其吸收光谱特性,基于光声光谱的多组分温室气体的定性和定量监测技术,搭建温室气体光声光谱在线监测实验平台,分析监测器内部噪声和环境温度、湿度等外部影响因素,并通过现场测试,分析试验数据,应用吸附法降低内外部因素的影响。结果表明,对称安装传声器和非共振式光声腔能有效削弱外部噪声对测试结果的影响;空气净化器能降低空气中水蒸气和其他气体对测试结果的影响;低、高浓度混合气体监测结果偏差均小于0.5,与GC测试结果偏差小于10%。应用光声光谱技术的环境温室气体监测技术监测范围宽,选择性好,且监测精度达10-6,适用于环境温室气体浓度在线监测。  相似文献   

6.
A comparative Life Cycle Assessment (LCA) of solar photo-Fenton and solar photoelectro-Fenton, two solar-driven advanced oxidation processes (AOPs) devoted to the removal of non-biodegradable pollutants in water, is performed. The study is based on the removal, at laboratory scale, of the amino acid α-methylphenylglycine, a good example of soluble and non-biodegradable target pollutant. The system under study includes chemicals, electricity, transport of all raw materials to the plant site, and the generation of emissions, but it does not take into account the impact of the infrastructure needed to build a hypothetical solar plant. Nine environmental impact categories are included in the LCA: global warming potential, ozone depletion potential, aquatic eutrophication potential, acidification potential, human toxicity potential, photochemical ozone formation potential, fresh water aquatic ecotoxicity potential, marine aquatic ecotoxicity potential, and terrestrial ecotoxicity potential and abiotic resource depletion potential. Although previous experimental results show that both AOPs are able to efficiently degrade the pollutant, the LCA indicates that solar-driven photo-Fenton is the most environmentally friendly alternative, mainly because the use of electricity in solar photoelectro-Fenton experiments involves high environmental impacts.  相似文献   

7.
Many trace constituents other than carbon dioxide affect the radiative budget of the atmosphere. The existing international agreement to limit greenhouse gases, the Kyoto Protocol, includes carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6) and credit for some carbon sinks. We investigate technological options for reducing emissions of these gases and the economic implications of including other greenhouse gases and sinks in the climate change control policy. We conduct an integreated assessment of costs using the MIT Emissions Prediction and Policy Analysis (EPPA) model combined with estimates of abatement costs for non-CO2 greenhouse gases and sinks. We find that failure to take advantage of the other gas and sink flexibility would nearly double aggregate Annex B costs. Including all the GHGs and sinks is actually cheaper than if only CO2 had been included in the Protocol and their inclusion achieves greater overall abatement. There remains considerable uncertainty in these estimates, the magnitude of the savings depends heavily on reference projections of emissions, for example, but these uncertainties do not change the overall conclusion that non-CO2 GHGs are an important part of a climate control policy.  相似文献   

8.
In recent years, climate change has caused a significant impact on the human living environment, and the greenhouse effect caused by gases such as carbon dioxide cannot be ignored. From the viewpoint of environmental management, Strategic Environmental Assessment (SEA) has the functions of value judgment, prediction, and behavioral orientation on the possible impact of strategic planning. Integrating climate change factors into the SEA process can help planners and decision-makers better highlight the importance of climate change in policy and planning stages. Therefore, by combining the development of the SEA of China with relevant international experience, we explore the integration of climate change factors into the SEA framework and construct a technical procedure for such an assessment. A suggestive assessment indicator system for the SEA based on low-carbon targets was established for evaluating the impact of the implementation of strategic planning on low-carbon development goals. The objective is to mitigate the impact of climate change via the SEA and to ensure that the assessment plays an important role in tackling climate change and promoting sustainable development.  相似文献   

9.
Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, this paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the development or adaptation of regional methodological procedures for Brazil.  相似文献   

10.
Atmospheric chemistry and climate modellers require gridded global emissions data as input into their models. To meet this urgent need a global emissions source database called EDGAR is being developed by TNO and RIVM to estimate for 1990, on a regional and on a grid basis, annual emissions of greenhouse gases (CO2, CH4, N2O, CO, NOx, non-methane VOC, SOx), of NH3, and of ozone depleting compounds (halocarbons) from all known sources. The aim is to establish at due levels of spatial, temporal and source aggregation the emissions from both anthropogenic and biogenic sources: a complete set of data required to estimate the total source strength of the various gases with a 1×1 ° resolution (altitude resolution of 1 km) and a temporal resolution of a month, supplemented by diurnal variation, as agreed upon in the Global Emissions Inventory Activity (GEIA) of the International Atmospheric Chemistry Programme (IGAC). In this way EDGAR will meet the requirements of present and future developments in the field of atmospheric modelling. The data comprise demographic data, social and economic factors, land use distributions and emission factors (with due emphasis on the uncertainty). As understanding in this field is still changing, due attention is paid to flexibility regarding the disaggregation of sources, spatial and temporal resolution and species. The objective and methodology chosen for the construction of the database and the structural design of the database system are presented, as well as the type and sources of data and the approach used for data collection. As an example, the construction of the N2O inventory is discussed.  相似文献   

11.
It is clear that mineral dust particles can impact a number of global processes including the Earth's climate through direct and indirect climate forcing, the chemical composition of the atmosphere through heterogeneous reactions, and the biogeochemistry of the oceans through dust deposition. Thus, mineral dust aerosol links land, air, and oceans in unique ways unlike any other type of atmospheric aerosol. Quantitative knowledge of how mineral dust aerosol impacts the Earth's climate, the chemical balance of the atmosphere, and the biogeochemistry of the oceans will provide a better understanding of these links and connections and the overall impact on the Earth system. Advances in the applications of analytical laboratory techniques have been critical for providing valuable information regarding these global processes. In this mini review article, we discuss examples of current and emerging techniques used in laboratory studies of mineral dust chemistry and climate and potential future directions.  相似文献   

12.
The radiative properties of atmospheric aerosols are determined by their masses, chemical characteristics, and optical properties, such as aerosol optical depth (AOD), Åstrom;ngström parameter (α) and single scattering albedo (SSA). In particular, the aerosol optical properties determine the surface temperature perturbation that may give some information in understanding regional atmospheric radiative forcing. To understand the radiative forcing and regional source of an aerosol, the present study focused on the analysis of the aerosol optical properties based on two different observations in the spring season, during the special Asian dust storm period. The Korean Global Atmosphere Watch Observatory (KGAWO), at Anmyeon Island, and the ACE-Asia super-site, at Gosan, Jeju Island, have measured radiations and aerosols since 2000. The sites are located in the mid-west and south of the Korean peninsula, which are strongly affected by the Asian dust coming from China every spring. The aerosol optical properties, measured by ground-based sun and sky radiometers, over both sites were analyzed to gain an understanding of the radiation and climate properties.The probability distributions of the aerosol optical depths were rather narrow, with a modal value of approximately 0.38 at both sites during 2001 and 2002. The Ångström parameter frequency distributions showed two peaks at Anmyeon GAW, but only one peak at the Jeju ACE-Asia super site. One peak, around 0.63, characterizes the situation of a day having Asian dust, the second peak, around 1.13, corresponded to the relatively dust-free cases. The correlation between the aerosol optical depth and the Ångström exponents resulted in a wide range of the Ångström parameter, α, over a wide range of optical depths at Anmyeon, whereas a narrow range of α, with moderate to low values for the AOD at Jeju. Under dust free conditions the single scattering albedo (SSA) decreased with wavelength, while in the presence of Asian dust,the SSA either stayed neutral, or increased slightly with wavelength at Anmyeon, and showed higher value than Jeju. The change in the surface temperature was highly correlated with increases in the aerosol optical depth at Anmyeon to a greater extent than at Jeju.  相似文献   

13.
The expansion of the industrial economy and the increase of population in Northeast Asian countries have caused much interestin climate monitoring related to global warming. However, new techniques and better platforms for the measurement of globalwarming and regional databases are still old-fashioned and arenot being developed sufficiently. With respect to this agenda,since 1993, at the request of the World Meteorological Organization (WMO), to monitor functions of global warming, theKorea Meteorological Administration (KMA) has set up a Global Atmospheric Watch (GAW) Station on the western coast of Korea(Anmyun-do) and has been actively monitoring global warming overNortheast Asia. In addition, atmospheric carbon dioxide (CO2) has been measured for a similar KMA global warmingprogram at Kosan, Cheju Island since 1990. Aerosol and radiationhave also been measured at both sites as well as in Seoul. Theobservations have been analyzed using diagnostics of climate change in Northeast Asia and also have been internationally compared. Results indicate that greenhouse gases are in good statistic agreement with the NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL) long-term trends of monthly meanconcentrations and seasonal cycles. Atmospheric particulatematter has also been analyzed for particular Asian types interms of optical depth, number concentration and size distribution.  相似文献   

14.
HRGC-MS determinations carried out on samples collected in urban, suburban, rural, forest and remote areas suggest that several other classes of non-methane VOC than isoprene and monoterpene hydrocarbons can be emitted by plants. Because of their high photochemical reactivity, they can contribute to tropospheric ozone production which, in turn, can cause climate changes through radiative forcing.  相似文献   

15.
The intense interest in desertification and climate change has stimulated detailed studies of temperature records in many areas of the world. In this investigation, the temperature records from the Middle East region are analyzed over the period 1950–1990. Results reveal a linear, statistically significant temperature increase of 0.07 °C/decade over the 41-year period. An analysis of spatial controls on these temperature changes reveals a warming effect associated with both overgrazing and the degree of human-induced desertification. The results of this study are consistent with theoretical and empirical studies predicting and demonstrating a warming signal associated with these land surface changes in the world's dryland areas.  相似文献   

16.
Overuse of land resources has increasingly contributed to environmental crises in China. To mitigate widespread land degradation, actions have been taken to maintain and restore the ecological environment through efforts such as ecological engineering. By analyzing trends in land use, the impact and effectiveness of ecological engineering can be determined. In this study, such changes in Huanjiang County in China were considered. In the early 1990s, an eco-immigration policy and “returning farmland to forest program” were implemented in the county, drastically impacting land use. Land use/land cover changes were detected and analyzed using remote sensing data recorded over 4 years (1995, 2000, 2005, and 2010). Land transfer flow and the rate of land use change elucidated the extent of changes, while nuclear density analysis indicated spatial agglomeration. The results indicate that, over a period of 15 years, farmland area increased, while forest area decreased initially before subsequently increasing. From 1995 to 2000, the highest transfer flow was observed in the grassland to farmland conversion (79.34%). From 2000 to 2005, the transfer flow of conversions was the highest for forest to farmland (56.79%). Land use changes were not prominent from 2005 to 2010. Direct drivers of land use change exert obvious impacts on land use, and indirect drivers impact direct drivers that are then channeled through direct anthropogenic drivers (e.g., land use policies). We found that ecological engineering has a very significant impact on land use change, and that impact varies from region to region.  相似文献   

17.
Monitoring land use and land cover change (LUCC) and understanding forest cover dynamics is extremely important in sustainable development and management of forest ecosystems. This study analyzed the spatial and temporal pattern of LUCC in the Yaln?zçam and U?urlu forest planning units which are located in the northeast corner of Turkey. The investigation also evaluates the temporal changes of the spatial structure of forest conditions through the spatial analysis of forest-cover type maps from 1972 and 2005 using geographical information systems and FRAGSTATSTM. As an overall change between 1972 and 2005, there was a net increase of 1,823 ha in forested areas, and cumulative forest improvement accounted for 2.06 %. In terms of spatial configuration, the landscape structure in the study area changed substantially over the 33-year study period, resulting in fragmentation of the landscape as indicated by large patch numbers and smaller mean patch sizes, owing to heavy grazing, illegal cutting, and uncontrolled stand treatments.  相似文献   

18.
Assessment of land use and climate change impacts on the hydrological cycle is important for basin scale water resources management. This study aims to investigate the potential impacts of land use and climate change on the hydrology of the Bago River Basin in Myanmar. Two scenarios from the representative concentration pathways (RCPs): RCP4.5 and RCP8.5 recommended by the Intergovernmental Panel on Climate Change, Fifth Assessment Report (IPCC AR5) were used to project the future climate of 2020s, 2050s, and 2080s. Six general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) were selected to project the future climate in the basin. An increase of average temperature in the range of 0.7 to 1.5 °C and 0.9 to 2.7 °C was observed under RCP 4.5 and RCP 8.5, respectively, in future periods. Similarly, average annual precipitation shows a distinct increase in all three periods with the highest increase in 2050s. A well calibrated and validated Soil and Water Assessment Tool (SWAT) was used to simulate the land use and climate change impacts on future stream flows in the basin. It is observed that the impact of climate change on stream flow is higher than the land use change in the near future. The combined impacts of land use and climate change can increase the annual stream flow up to 68 % in the near future. The findings of this study would be beneficial to improve land and water management decisions and in formulating adaptation strategies to reduce the negative impacts, and harness the positive impacts of land use and climate change in the Bago River Basin.  相似文献   

19.
Climate change has impacts on both natural and human systems. Accurate information regarding variations in precipitation and temperature is essential for identifying and understanding these potential impacts. This research applied Mann–Kendall, rescaled range analysis and wave transform methods to analyze the trends and periodic properties of global and regional surface air temperature (SAT) and precipitation (PR) over the period of 1948 to 2010. The results show that 65.34 % of the area studied exhibits significant warming trends (p?<?0.05) while only 3.18 % of the area exhibits significant cooling trends. The greatest warming trends are observed in Antarctica (0.32 °C per decade) and Middle Africa (0.21 °C per decade). Notably, 62.26 % of the area became wetter, while 22.01 % of the area shows drying trends. Northern Europe shows the largest precipitation increase, 12.49 mm per decade. Western Africa shows the fastest drying, ?21.05 mm per decade. The rescaled range analysis reveals large areas that show persistent warming trends; this behavior in SAT is more obvious than that in PR. Wave transform results show that a 1-year period of SAT variation dominates in all regions, while inconsistent 0.5-year bands are observed in East Asia, Middle Africa, and Southeast Asia. In PR, significant power in the wavelet power spectrum at a 1-year period was observed in 17 regions, i.e., in all regions studied except Western Europe, where precipitation is instead characterized by 0.5-year and 0.25-year periods. Overall, the variations in SAT and PR can be consistent with the combined impacts of natural and anthropogenic factors, such as atmospheric concentrations of greenhouse gases, the internal variability of climate system, and volcanic eruptions.  相似文献   

20.
Economic analyses of the greenhouse effect are typically carried out within the framework of computable general equilibrium models which represent the climate system by simple two box proxies based upon the pioneering work of Nordhaus. Since errors in predicting the carbon budget can imply high costs, there is some need to include more sophisticated climate models into the economics of global climate change. This paper presents a non-linear pulse representation of the process-based and data-validated Bern carbon model. Compared to the Nordhaus approach this leads to different results with respect to optimal climate policy and atmospheric carbon dioxide concentration. In particular, our results suggest that economic studies which use a Nordhaus representation of the climate system are biased towards high carbon emission and low abatement levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号