首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湿热试验箱中加湿锅炉是保证湿热试验正常进行的重要装置,加热管的使用寿命直接关系到设备的使用可靠性,通过分析影响加热管寿命的主要因素,提出了一种对加湿锅炉的改进方法,并应用于实验室。对多台湿热试验箱进行改造后,延长加热管的使用寿命,方便设备的维护保养,提高了湿热试验箱设备的使用可靠性。  相似文献   

2.
ABSTRACT

Refrigerant pressure drop and temperature change in pipes are normally ignored in the thermodynamic analysis of traditional vehicle air conditioning system, this will result in serious errors. In this Paper, pressure drop and temperature difference are simulated in different pipes of electric vehicle (EV) heat pump system to analysis the effects of pipes in the actual EV heat pump system. The results indicate that the greater the mass flow, the faster pressure drop increases, the temperature difference decreases. Pressure drop of saturated liquid refrigerant is smaller than that of saturated gas refrigerant at the same saturation pressure and mass flow rate. The higher the refrigerant pressure (no phase change), the slower pressure drop decreases, the faster the temperature difference decreases. Pressure drop decreases with the increment of bending angle of the pipe. For EV heat pump system, suitable valves and less branches are helpful for energy saving of the system. Shortening the pipe between compressor and condenser can reduce temperature change obviously. Pressure drop per unit length in the pipe between evaporator and compressor is large especially in heating mode because of lower refrigerant density. It even reaches to over 100 times of that in the pipe between condenser and throttle valve in heating mode and has negative effects on the performance of the system. If the evaporator is closer to the compressor and the number of branches is less, then pressure drop will decrease a lot, which will be advantageous for energy saving of the heat pump system.  相似文献   

3.
In order to decrease the heat rejection pressure of heat pump using pure working fluid, CO2 or R744, other natural component including hydrocarbons (R290, R600a, R600, R1270, R170, R601) and dimethyl ether (RE170) is added to CO2, respectively, and then six binary mixtures are achieved. By environmental and thermodynamic comparisons, R290 is selected to be the most appropriate component candidate to mix with CO2, and meanwhile to weaken the flammability and explosivity for pure R290. Then, the system performances of heat pump using mixture of CO2 and R290 were experimentally studied when R290 is added to CO2 with a small fraction, and compared with that of the pure CO2. The experimental test rig is designed and set up for the transcritical heat pump system. When the refrigerant charge is variable, the heating coefficient performance, optimum heat rejection pressure, compressor power, mass flow rate of refrigerant, and total heat coefficient of gas cooler were researched. The variation ratios of heating coefficient performance and heating capacity with deviation from the optimum refrigerant charge were also investigated. The optimum refrigerant charge of CO2/R290 is obtained and the research results show that the addition of R290 to CO2 can efficiently reduce the heat rejection pressure and improve the system performance. The results in the present work could provide useful guidelines for the design and operation of heat pump system using CO2-based mixture.  相似文献   

4.
A combined photovoltaic–thermal (PV/t) panel is proposed to produce simultaneously electricity and heat from one integrated unit. The unit utilizes effectively the solar energy through achieving higher PV electrical efficiency and using the thermal energy for heating applications. To predict the performance of the PV/t at a given environmental conditions, a transient mathematical model was developed. The model was integrated in a heating application for a typical office space in the city of Beirut to provide the office needs for electricity, heating during winter season, and dehumidification and evaporative cooling during the summer season. To minimize the yearly office energy (electrical and heat) needs, the PV/t panel cooling air flow rate and the dehumidification regeneration temperature were determined for opimal unit operation. Thermal energy savings of up to 85% in winter and 71% in summer were achived compared to conventional systems at a payback period of 8 years for the panels.  相似文献   

5.
ABSTRACT

An eQUEST model was developed to conduct a simulation study of a natural gas engine-driven heat pump (GEHP) for an office building in Woodstock, Ontario, Canada. Prior to the installation of the GEHP, the heating and cooling demands of the office building were provided by rooftop units (RTUs), comprising of natural gas heater and electric air conditioner. Energy consumption for both GEHP and RTUs were monitored for operation in alternating months. These recorded energy consumptions along with weather data were used in the regression analysis. The developed eQUEST models were validated and calibrated with the regression analysis results with respect to the ASHRAE Guideline 14–2014. The eventual models were then applied to investigate the potential annual energy consumption, greenhouse gas (GHG) emission and energy cost savings achieved by using the GEHP in Woodstock, and other cities in Canada, particularly in Ontario.  相似文献   

6.
Abstract

This article presents a case study of a projected solar assisted biomass district heating system in the north of Sweden. It is generally known that a biomass district heating system combined with solar heat brings many important benefits. The most common system solution is to install a heat store and a large solar collector field near the heating central. No plant of this type is however in operation in the northern part of Sweden. The main reason for this is that the solar irradiation at these latitudes is very low when the demand for heat is high. Solar heat could however be useful during summer in order to generate hot tap water. One problem is that the heat losses, calculated as percentage of the delivered heat, become very large during these months. This article presents the idea of allowing the connected households to generate their own hot tap water using solar collectors and heat stores installed in each house. The district heating network can therefore be closed in summer, which eliminates the heat losses outside the heating period. A case study of a projected plant has been carried out and it is shown that it is possible to reduce the heat losses by 20% compared to a conventional system. This idea also provides many other important technical and economic benefits.  相似文献   

7.
An untreated sewage source heat pump system directly makes use of the urban raw sewage instead of that treated by a sewage plant. At present In China, most systems adopt the indirect mode for avoiding the harmful effect of the sewage on the heat pump unit. In this article a direct-mode untreated sewage source heat pump system, which shows less theoretical analysis of the mathematical model, is theoretically designed and analyzed to simulate the system dynamic characteristics in the heating mode. The results show that the system COP changes from 4.1 to 3.4 and the heating capacity from 9.5 to 15.3 kW when the sewage inlet temperature is 12°C and the frequency increases from 18 to 32 HZ. The condenser heat-transfer coefficient increases with the frequency reducing while the change trend of evaporator heat-transfer coefficient is the opposite. The highest values of them are 303 and 1617 W.m?2?K?1, respectively. The frequency control simulation supplies the operation adjustment with theoretical instructions and some reference values.  相似文献   

8.
Abstract

Heating and air-conditioning systems have very low exergetic efficiency as they dissipate primary energy resources at low temperatures usually between 90 and 60°C. This compounds the problem that buildings spend approximately 30% of all the energy consumed in the U.S. for heating and air-conditioning. The overall result is a large entropy production and long-term environmental degradation that can be resolved only by substituting primary energy resources by low-temperature, waste, or alternative energy resources, usually available below 50°C. For such a replacement to be feasible the environmental cost of exergy production must be factored into calculations and compatible HVAC systems must be developed without any need for temperature peaking or equipment oversizing. This article addresses environmental and often-conflicting problems associated with exergy production by HVAC systems and presents an analytical optimization and control algorithm. Results indicate that when a careful design optimization is accompanied by a dynamic control of the split between radiant and convective means of satisfying thermal HVAC loads, exergy efficient sustainable buildings may be cost effective and environmentally benign.  相似文献   

9.
Abstract

Thermal energy storage (TES) technologies in general and phase change materials (PCMs) in particular, have been topic in research for the last 20 years. Traditionally, available heat has been stored in the form of sensible heat (typically by raising temperature of water, rocks, etc). Latent heat storage on the other hand, is a novel and developing technology, which has found considerable interest due to its operational advantages of smaller temperature swing, smaller size, and lower weight per unit of storage capacity. The interest on thermal energy storage by using fatty acids as PCM has risen in recent times since they have desired thermodynamic and kinetic criteria for low temperature latent heat storage. An added advantage is that fatty acids are derived from the vegetable and animals oil that provides an assurance of continuous supply. This article will review the development of fatty acids as PCMs for solar thermal energy storage application.  相似文献   

10.
针对寒冷地区建筑物的采暖方式,介绍一种新型的区域供暖方式--地温水源热泵(地温中央空调)供暖系统,为寻找新型供暖方式提出了环保安全、绿色节参采暖制冷新理念。  相似文献   

11.
ABSTRACT

Cold chain industry has a vast potential for waste heat recovery. It is a matter of importance for energy efficiency point of view, as global energy demand is increasing day by day. Ample amount of low-grade energy is either unutilized or underutilized. The heat rejected by a Heat pump or refrigeration system emerged as a promising solution for dehydration by utilizing low-grade waste heat despite higher investment. As compared to solar drying technology, heat pump drying evolved as a reliable method regarding better process control, energy efficiency, and quality of the product to be dried. Energy utilized through the refrigeration system’s waste/exhaust heat recovery in combination with or without renewable energy source enhances the overall efficiency of the system and also reduces the cost. This useful review investigated and compared the research findings of waste heat utilization through heat pump and from condenser of refrigeration system on laboratory, pilot as well as industrial scale for drying of various fruits, vegetables, and agro products. Various drying parameters like drying rate, moisture content, Specific Moisture Extraction Rate (SMER), Coefficient of Performance (COP), Exergy efficiency, and temperature as well as humidity conditions inside the drying chamber were also reviewed to promote the technological advancement of energy utilization by commercial cold storage waste heat recovery.  相似文献   

12.
长庆油田矿区服务事业部各生活小区锅炉90%的能源用于小区采暖供热,锅炉供热能耗大,效率低。为降低供热能耗,2012年1月对庆城基地锅炉系统中的SZL14--1.0/95/70型号锅炉使用固硫节煤剂的应用效果进行了现场试验对比。试验证明:通过添加新型固硫节煤剂能改善炉膛燃烧氛围、促进燃烧完全,降低炉渣含碳量,提高热效率7%,节煤率12%。同时,固硫效果明显,烟尘排放CO、SO2明显减少。  相似文献   

13.
ABSTRACT

Radiant floor systems have the potential to reduce energy consumption and the carbon footprint of buildings. This study analyzed a novel radiant panel configuration comprising a metal plate with small spikes that can be pressed into cement board or wood. The behavior of this configuration was simulated for different materials for the metal plate, spike dimensions, and varying spacing between spikes. An annual energy simulation model compared the radiant panel configuration with the traditional concrete-based system. Simulations were run under heating dominant, cooling dominant, and neutral conditions; significant cost savings and greenhouse gas emission reduction were seen across all scenarios.  相似文献   

14.
This study investigates the possibility of capturing CO2 from flue gas under pressurised conditions, which could prove to be beneficial in comparison to working under atmospheric conditions. Simulations of two hybrid combined cycles with pressurised fluidised bed combustion and CO2 capture are presented. CO2 is captured from pressurised flue gas by means of chemical absorption after the boiler but before expansion. The results show a CO2 capture penalty of approximately 8 percentage points (including 90% CO2 capture rate and compression to 110 bar), which makes the efficiency for the best performing cycle 43.9%. It is 5.2 percentage points higher than the most probable alternative, i.e. using a natural gas fired combined cycle and a pulverised coal fired condensing plant separately with the same fuel split ratio. The largest part of the penalty is associated with the lower mass flow of flue gas after CO2 capture, which leads to a decrease in work output in the expander and potential for feed water heating. The penalty caused by the regeneration of absorbent is quite low, since the high pressure permits the use of potassium carbonate, which requires less regeneration heat than for example the more commonly proposed monoethanolamine. Although the efficiencies of the cycles look promising it will be important to perform a cost estimate to be able to make a fair comparison with other systems. Such a cost estimate has not been done in this study. A significant drawback of these hybrid cycles in that respect is the complex nature of the systems that will have a negative effect on the economy.  相似文献   

15.
This paper presents a change in the Scottish forestry policy from the exogenous to the endogenous development approach, and feasibility of heat entrepreneurship based on locally produced woodfuels in the Highlands of Scotland. The cost structure and heat pricing in the case of an 800 kW solid fuel boiler is presented, and the profitability of local heat entrepreneurship is analysed with scenarios of different investment costs and fuel prices. The results indicate that a district heating (DH) system, using locally produced woodchips, could produce heat at a lower price than single-house heating systems using light fuel oil. The profitability of replacing existing heating units by investing in a new district heating (DH) scheme is very dependent on the available investment support, price level of woodchips and substituted light fuel oil, and the amount of sold energy. In the case of an 800 kW DH scheme, and woodchip prices of 14 and 22 €/MWh, investments should remain under break-even points of 280 and 420 €/kW of heating power (230,000–335,000€).  相似文献   

16.
Earth air tunnel heat exchanger (EATHE) is a promising passive technique to provide thermal comfort condition in buildings. EATHE system uses undisturbed temperature of the ground for heating/cooling of air. Despite the several advantages, this technique has not become much popular owing to its high capital cost (mainly pipe cost and trench excavation cost) and large land area requirements. The primary objective of this study is to present a comprehensive review of different EATHE pipe layouts, pipe properties and positioning of the pipe with their advantages and limitations. It is observed that the ring pipe layout is the most cost-effective pipe-layout for small size EATHE system because it saves excavation cost by using a trench of the existing foundation of the building. However, Grid pipe-layout is an ideal layout for a large size EATHE system. Multi-layer pipe layouts should be used to reduce the land area requirement significantly. Moreover, EATHE system can be installed beneath the building (under building foot-print) to eliminate extra land area requirement for the installation of EATHE system. This review article shows that the Initial capital cost and land area requirement for the EATHE system can be substantially reduced by using appropriate pipe layout. It can be concluded that if EATHE system is installed with proper design strategies, it will be a clean and cost-effective method for building heating/cooling with significant power savings.  相似文献   

17.
The formation and spray coating, with Degussa P25 titanium dioxide (TiO2), of a room temperature curable resin to form a photocatalytically active material is described in this paper. The TiO2 surface layers produced have been characteristed with the aid of scanning electron microscope analysis. The photocatalytic activity of the samples tested using a gas phase continuous flow type photoreactor, the test pollutant being propene. Analysis of the test results indicates the potential of TiO2 coated polymers to form effective photocatalytic materials, with the potential to improve indoor air quality and reduce the energy consumption of ventilation systems.  相似文献   

18.
重庆市应用湖库水水源热泵系统条件分析   总被引:1,自引:0,他引:1  
通过对重庆市气候条件、湖库水水资源状况以及湖库水水温和水质分析,结果显示:重庆地区采用传统空气源热泵系统已不适宜,而采用水源热泵系统具有较高的节能优势。丰富的湖库水水资源量以及重庆市建筑沿湖库水而建特点,为在重庆市开展湖库水水源热泵系统创造便利条件;湖库水水温和水质基本能满足地表水水源热泵系统的水源要求;湖库水藻类易爆发,因此发展湖库水水源热泵主要解决的水质问题是藻类的堵塞问题。  相似文献   

19.
ABSTRACT

Thermal potential for cooling and heating can be achieved by new configuration of earth–air heat exchanger (EAHE). This paper presents a numerical investigation of thermal performance of a spiral-shaped configuration of EAHE intended for the summer cooling in hot and arid regions of Algeria. A commercial finite volume software (ANSYS FLUENT) has been used to carry out the transient three-dimensional simulations and the obtained results have been validated using the experimental and numerical data obtained from the literature. The agreement between our simulation results and those from literature is very satisfactory. A parametric analysis of the new geometry of (EAHE) has been performed to investigate the effect of pitch, depth, pipe length and of the flow velocity on the outlet air temperature and the EAHE’s mean efficiency as well as its coefficient of performance (COP). It has been shown that when the pitch space varies between 0.2 and 2 m the difference of outlet air temperature increases by 6 °C. When the air velocity increases from 2 to 5 m/s the mean efficiency decreases from 60 % to 33 % and the COP of the EAHE decreases from 2.84 to 0.46.  相似文献   

20.
环境质量与建筑节能技术问题的探讨   总被引:1,自引:0,他引:1  
乌鲁木齐冬季空气的主要污染源来自来建筑物提供热源的烯煤锅炉房。为了实现市政府提出5年还乌市人民一片蓝天的号召,在实行集中供热和加大治理力度的同时,积极推进建筑节能技术,降低建筑物耗热量(耗煤量)指标,减少污染物排放量,是实现蓝天工程的重要措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号