首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用部分反硝化活性污泥耦合厌氧氨氧化生物膜处理低碳氮比废水(C/TN=1.63),考察生物膜-活性污泥复合系统(IFAS)进行部分反硝化耦合厌氧氨氧化(PD/A)处理低碳氮比废水的可行性及其耦合后两相中功能菌活性与菌群分布变化规律.结果显示,系统耦合运行期间,出水TN为(5.07±0.2)mg/L,去除率为(90.7±0.1)%,厌氧氨氧化途径对TN去除的贡献率高达(86.61±3.4)%;固着相对厌氧氨氧化活性的贡献率为100%,悬浮相上,μ(NO3--N)占比为99.32%,μ(NO2--N)占比为99.22%;与耦合前相比,悬浮相中硝酸盐还原酶(Nar)活性由(0.43±0.05)μmol/(mg protein·min)增加至(0.49±0.09)μmol/(mg protein·min),亚硝酸盐转化率明显升高[(70±2.2)%~(90.01±2.3)%];Illumina MiSeq结果显示,固着相上的优势菌属为Candidatus_Brocadia,且耦合前后丰度无明显变化(33.61%~33.43%),悬浮相上反硝化菌属Prosthecobacter,Ferruginibacter,OLB8丰度增加.以上结果表明,在IFAS系统中可以实现稳定的PD/A协同脱氮,耦合后部分反硝化由悬浮相主导,厌氧氨氧化由固着相主导,厌氧氨氧化菌(AnAOB)与反硝化菌对NO2­--N的竞争强化了悬浮相部分反硝化能力.  相似文献   

2.
通过连续流实验和批式实验研究了有机物和NO2--N对厌氧氨氧化菌和反硝化菌耦合脱氮特性的影响.在连续流实验中,保证底物NO2--N充足,研究了葡萄糖有机物对厌氧氨氧化颗粒污泥反应器脱氮性能的影响.当进水葡萄糖有机物的COD浓度为100mg/L时,颗粒污泥具有良好的厌氧氨氧化耦合反硝化脱氮活性,当COD浓度为200mg/L时,颗粒污泥的厌氧氨氧化耦合反硝化脱氮活性较差.当进水COD浓度分别为100,200mg/L时,反应器中颗粒污泥的厌氧氨氧化NH4+-N去除活性分别为0.096,0.071kg NH4+-N/(kgVSS-d),厌氧氨氧化NO2--N去除活性分别为0.153,0.092kg NO2--N/(kgVSS-d),反硝化NO2--N去除活性分别为0.111,0.212kg NO2--N/(kgVSS-d).在批式实验中,研究了碳源种类和COD/NO2--N比对厌氧氨氧化耦合反硝化颗粒污泥脱氮性能的影响.控制COD/NO2--N比为1~4,以葡萄糖为碳源时,厌氧氨氧化菌在亚硝态的竞争过程中占据优势;以乙酸钠为碳源时,控制COD/NO2--N比为1~4,厌氧氨氧化菌在亚硝态的竞争过程中处于劣势.  相似文献   

3.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

4.
异养硝化、厌氧氨氧化及古菌氨氧化与新的氮循环   总被引:7,自引:1,他引:6  
自然界中氮循环与微生物的作用密不可分.在过去的几年里,随着异养硝化、厌氧氨氧化和古菌氨氧化过程的发现,人们对氮循环的认识发生了明显的变化.就异养硝化菌、厌氧氨氧化菌和氨氧化古菌的发现、生化机理及分子生物学等方面进行综述,旨在为今后人们重新认识和构建新的氮循环提供有用信息,并对这些新型微生物今后在污水生物脱氨处理中的应用提出了一些展望和设想.指出今后在污水生物处理系统中,可通过富集异养硝化菌强化同步硝化反硝化、富集厌氧氨氧化菌实现单级自养脱氟、富集氨氧化古菌提高低溶解氧下的脱氮效率.  相似文献   

5.
厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征   总被引:8,自引:6,他引:2  
宋壮壮  吕爽  刘哲  时兴东  潘傲  张智 《环境科学》2019,40(11):5057-5065
为了解厌氧氨氧化耦合反硝化启动过程中脱氮除碳性能与微生物群落的关系,通过逐步提高进水COD浓度研究了SAD启动过程中脱氮除碳性能和微生物群落变化.结果表明,随着进水COD浓度增加,出水NH_4~+-N和NO_2--N的浓度保持稳定,平均去除率均在98%以上; TN去除率逐渐升高,第3阶段TN平均去除率为95. 6%,比厌氧氨氧化理论TN去除率高6. 8%;ΔNO_3~--N/ΔNH_4~+-N明显下降,从0. 15~0. 17逐步降至0. 03~0. 07;厌氧氨氧化脱氮贡献率逐渐下降,反硝化脱氮贡献率逐渐上升,COD去除率逐步增加.污泥活性分析表明SAD启动后污泥反硝化活性明显增加,厌氧氨氧化活性略微降低.高通量测序结果表明,反应器内微生物的优势菌门为绿弯菌门、浮霉菌门、厚壁菌门、装甲菌门和变形菌门,微生物群落特征与SAD脱氮除碳性能密切相关,与脱氮除碳有关的功能微生物主要有厌氧氨氧化菌、厌氧消化菌和反硝化菌,SAD启动后反应器内厌氧氨氧化菌丰度减少,厌氧消化菌和反硝化菌丰度明显增加.  相似文献   

6.
生活垃圾焚烧厂渗沥液是一种含高氨氮高有机物浓度的难处理废水,目前渗沥液生物脱氮多采用多级硝化反硝化处理工艺,存在能耗大、效率低等不足。以厌氧氨氧化技术为核心,构建连续流厌氧消化-短程硝化-厌氧氨氧化三段式工艺,分析垃圾焚烧厂渗沥液的生物脱氮效果、有机物迁移转化规律、功能微生物活性及组成变化。结果表明:在进水ρ(NH4+-N)为900~1800 mg/L,ρ(COD)为3000~20000 mg/L时,系统处理效果良好,稳定运行期间总无机氮和COD去除率分别为85%和77%。其中厌氧消化段可去除约45%的COD,短程硝化段NO2--N积累率保持在97%以上,厌氧氨氧化段稳定运行期间总无机氮去除率约为85%,系统内也存在一定程度反硝化反应。接入渗沥液后,自养脱氮体系中功能微生物氨氧化菌(AOB)和厌氧氨氧化菌(Anammox)的活性均有不同程度的下降,采用宏基因组学结合16S rDNA高通量测序技术对比分析微生物的群落和功能组成变化,发现渗沥液中高浓度的有机物使短程硝化段和厌氧氨氧化段内异养反硝化菌相对丰度上升,Anammox受到难降解有机物抑制,其中Candidatus_Kuenenia菌属适应性较强,在驯化后仍然可以维持厌氧氨氧化系统较高的脱氮效果。  相似文献   

7.
采用无机含氨和硫酸盐(SO42-)废水作为升流式污泥床(USB)反应器进水,研究了其对铵(NH4+)和SO42-的去除以及不同高度污泥层含氮、硫元素的转化途径.结果表明在反应器进水口处由于进水自含氧(外源性氧)和兼性厌氧菌受到氧化应激产生过氧化氢(内源性氧),两种“氧”共同存在下,反应器内生物脱氨量(以氮计)最高达40mg/L左右,且在USB反应器不同高度污泥层含氮化合物和含硫化合物的转化途径不同.在反应器底部污泥层,颗粒污泥表面氨氧化菌利用O2将氨(NH4+)氧化成亚硝酸盐(NO2-),在颗粒污泥内部厌氧氨氧化菌利用NH4+和NO2-生成氮气(N2)和硝酸盐(NO3-);同时,O2的存在使得反应器底部污泥层部分厌氧颗粒污泥裂解,产生少量有机物,在颗粒污泥内部硫酸盐还原菌利用有机物将SO42-还原生成硫离子(S2-);硫自养反硝化菌利用NO2-/ NO3-将S2-重新氧化为SO42-.在反应器上部污泥层,由于只有少量内源性氧的存在,硫自养反硝化菌只能利用少量NO2-/ NO3-将S2-氧化为硫单质(S0);在USB反应器底部污泥层实现NH4+的去除和SO42-的循环,在上部污泥层实现了SO42-的去除.  相似文献   

8.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

9.
研究了单质硫颗粒自养反硝化柱中表面和间隙生物膜的微生物群落结构、功能基因和代谢途径等生物信息学特征.结果表明,硫颗粒表面生物膜的微生物菌群多样性低于间隙生物膜.氮代谢功能基因丰度差异较为显著,间隙生物膜中硝酸盐和亚硝酸盐的胞外转运蛋白基因丰度远高于表面生物膜,分别为0.0792%、0.109%与0.0157%、0.0314%.对于还原性反硝化代谢,表面生物膜的总基因丰度却明显低于间隙生物膜,分别为0.367%、0.406%.此外,参与反硝化过程的基因丰度明显不同,特别是将NO3-还原成NO2-以及将N2O还原成N2过程中的基因.对于硫代谢,没有观察到明显的差异.APS (硫酸腺苷)氧化是将SO32-氧化为SO42-的主要途径,其基因丰度远远高于直接氧化途径,分别为0.137%与0.0005%(表面)、0.138%与0.0007%(间隙).结果表明,在单质硫自养反硝化过程中,间隙生物膜与表面生物膜中的微生物存在合作关系,协同促进硫自养反硝化脱氮过程.  相似文献   

10.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

11.
以短程硝化恶化的全程自养脱氮工艺(CANON)污泥为研究对象,在间歇曝气序批式反应器(SBR)中开展自养脱氮运行效果的恢复调控研究,并基于微生物群落结构变化探究微生物调控机理.结果表明,高氨氮(NH4+-N ≥300mg/L)和调节曝停比至1:3,可有效抑制亚硝酸盐氧化菌(NOB).稳定后期,亚硝酸盐氧化率(NOR)逐渐降至2.30g N/(m3·h),ΔNO3--N/ΔNH4+-N逐渐降至0.13,总氮去除率(TNRR)提高到0.35kg N/(m3·d),后延长厌氧段时间至90min,可使NOR进一步下降接近0.16S rDNA高通量测序结果表明,从恢复阶段初到稳定阶段,检测到NOB主要菌属为Nitrospira,其相对丰度从3.96%降至0.64%,Candidatus_Jettenia菌属(属于厌氧氨氧化菌(AnAOB))相对丰度从46.68%上升至49.98%.可见,通过短期提高进水氨氮浓度可使NOB得到有效抑制,并逐渐被淘汰,使AnAOB得到富集,AOB相对丰度稳态,CANON系统得到恢复.  相似文献   

12.
李佳霖  秦松 《中国环境科学》2021,41(4):1588-1596
本研究选取弥河4个站点为研究对象,在不同季节分别采集沉积物样品,测定理化指标,并采用同位素配对技术和分子生物学方法,研究了沉积物中的反硝化和厌氧氨氧化作用及其影响因素.结果表明,弥河沉积物中的反硝化速率变化范围为151.75~2847.86μmol/(m2×h),厌氧氨氧化速率的变化范围为149.57~2109.17μmol/(m2×h),厌氧氨氧化在氮去除中的贡献量平均达到56.1%.沉积物中的反硝化细菌以nirK型为主,丰度为0.19×106~5.12×106个/g,主要是α-和β-变形菌门;厌氧氨氧化细菌以hzsA为标记基因的丰度范围是2.58×102~1.14×104个/g,主要为浮霉菌门的Brocadia属细菌.反硝化速率与沉积物中的TN含量和间隙水PO43-呈正相关关系,厌氧氨氧化作用与沉积物中的TN含量呈正相关,而与沉积物密度呈负相关关系,沉积物的理化指标是决定氮去除速率的主要环境条件.弥河的反硝化和厌氧氨氧化作用明显,对减轻氮超标具有重要意义,合理改变沉积环境是有效提高氮去除速率的可参考方式.  相似文献   

13.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

14.
考察了在低温条件下(<20℃)废铁屑及其投加方式对厌氧氨氧化反应器脱氮性能和微生物群落的影响.结果表明,当废铁屑投加量为10g/L时,直接(R2)和间接(R3)投加方式均会对厌氧氨氧化反应造成短期抑制,总氮去除率分别降低4.7%和3.4%;30d连续运行后,2组反应器总氮去除率均提升至70%左右;反应器稳定运行阶段,R2的Rs(NO2--N与NH4+-N去除量之比)和Rp(NO3--N生成量与NH4+-N去除量之比)为1.57和0.22, R3的RsRp为1.49和0.23,比R2更接近厌氧氨氧化反应理论值.废铁屑在水中发生腐蚀,降低DO并提高pH值,且R2,R3污泥中铁含量分别为对照组的1.64倍和1.93倍,废铁屑不仅改善了厌氧氨氧菌的生境,还满足了其对铁元素的需求.高通量测序结果显示,在20~50d的运行过程中, R1,R2,R3中优势厌氧氨氧化菌属Candidatus_Kuenenia的相对丰度分别增加-1.05%,0.14%和0.96%,废铁屑的投加促进了厌氧氨氧化菌在低温下的生长,且间接投加促进效果更为显著.  相似文献   

15.
通过试验模拟不同幅度、不同频率的脉冲式进水流量波动,研究脉冲式流量波动对已稳定运行的厌氧氨氧化UASB反应器性能的冲击影响.结果表明,在脉冲波动幅度小于60mL/min(上升流速1.33cm/min)范围内,厌氧氨氧化UASB反应器表现出良好的适应性和承受力,甚至对于高频率的波动冲击,出水也可达到一级A标准,NH4+-N和NO2--N去除率都基本维持在80%以上,总氮去除率维持在70%以上.而当脉冲的波动幅度为100mL/min(上升流速2.22cm/min)时,则UASB反应器的出水水质波动性大,随着波动频率的增大,反应器的适应时间增长,一直到波动频率为1.5h时,反应器出水NH4+-N和NO2--N浓度难以稳定在5mg/L以下.随着波动幅度由40mL/min增大到60,100mL/min,反应器内污泥中厌氧氨氧化菌的丰度值和厌氧氨氧化菌占全细菌的百分含量均呈现先增多后减少的趋势,在波动幅度为60mL/min时均为最大,可能是由于此时污泥和基质的混合与接触更为高效,氮去除效率高,更有利于厌氧氨氧化菌的生长.  相似文献   

16.
采用缺氧/好氧间歇运行模式,考察进水碳氮比(C/N=5.0,3.3,2.5,2.0)对部分反硝化过程亚硝态氮(NO2-)积累特性和污染物降解规律的影响,同时结合高通量测序,探究微生物多样性和功能菌群的演变规律.结果表明,C/N为2.5时,系统获得最佳处理效果,出水NO2-浓度为27.18mg/L,亚硝态氮转化率(NTR)高达67.96%;分析典型周期各污染物的降解规律发现,尽管4组工况均在缺氧30min时NO2-积累达到峰值(最高值分别为4.86(C/N=5.0),16.52(C/N=3.3),30.16(C/N=2.5),20.28(C/N=2.0) mg/L),但COD降解速率的不同直接影响了反硝化进程,且只有在低C/N条件(C/N=2.0~2.5)才能维持稳定的NO2-积累.高通量测序结果表明,除了Thauera(2.67%~24.04%)、Terrimonas(4.94%~21.19%)、Saprospiraceae(5.34%~13.50%)等常规功能菌属外,Flavobacterium(28.23%)是C/N为2.5时维持高NO2-积累的优势菌属.结合部分反硝化工艺的运行特点,探讨了NO2-作为中间产物的相关耦合工艺的应用可行性.  相似文献   

17.
利用UASB反应器分别在降低进水亚硝氮/氨氮比(R)和停供亚硝氮条件下研究了Anammox体系运行特性.发现随着进水亚硝氮减少,亚硝氮与氨氮去除摩尔比减小,发生氨氮超量去除现象,即使进水无亚硝氮时也可去除氨氮.当R为1:2时,氨氮超量去除量达最大,均值为57.2mg/L;长期停供亚硝氮条件下氨氮能够稳定去除,平均去除量为45.6mg/L.停供亚硝氮后Anammox体系中微生物群落多样性增加,AnAOB、氨氧化菌和反硝化菌相对丰度均增加.其中AnAOB相对丰度从9.44%增长到13.26%;氨氧化菌相对丰度从3.29%增长到7.3%;反硝化菌相对丰度由0.54%增加到3.14%.研究表明,溶解氧是氨氮超量去除量的限制性因素,氨氮超量去除的途径包括:好氧氨氧化、厌氧氨氧化与部分内碳源反硝化.在微量溶解氧作用下,主要是氨氧化菌与厌氧氨氧化菌协同实现了氮的去除.  相似文献   

18.
向厌氧氨氧化(anammox)膜生物反应器(MBR)投加悬浮填料,考察其对反应器脱氮性能和膜污染的影响特性,并探究了相关机理.试验结果表明,投加填料后,反应器脱氮性能良好.当进水氨氮(NH4+-N)160mg/L、亚硝态氮(NO2--N)180mg/L时,出水NH4+-N和NO2--N均在15mg/L以下,硝态氮(NO3--N)在30mg/L以下,总氮去除率可达90%.投加填料显著减轻了膜污染,跨膜压差(TMP)稳定在8kPa左右.混合液中溶解性微生物产物(SMP)和胞外聚合物(EPS)成分分析结果表明,在第67~149d,蛋白质总量、多糖总量和总有机碳总量分别下降了49%、43%和61%,它们浓度的下降有利于延缓膜污染;此外,悬浮填料对膜组件的机械碰撞也起到了物理清洗作用.高通量测序结果显示,悬浮填料生物膜在anammox菌相对丰度方面显著高于混合液污泥,说明anammox菌更适宜于附着生长,投加填料可以为其提供更加稳定的生长环境.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号