首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
鲜水河断裂带虾拉沱盆地断面地下水化学特征及控制因素   总被引:5,自引:3,他引:2  
为研究鲜水河断裂带内地下水水化学特征及离子来源,在采集虾拉沱盆地内降水、地表水、地下水、温泉水样品的基础上,综合运用离子比值、相关性分析、Gibbs图、Piper三线图和饱和指数等方法,分析了地下水中主要离子特征,并结合氢氧同位素信息分析了地下水的补给来源.结果表明,虾拉沱盆地地下水均为弱碱性,阳离子以Ca~(2+)、Mg~(2+)和Na~+为主,Ca~(2+)占总离子2. 6%~53. 6%,平均为28. 84%,Mg~(2+)占总离子2. 7%~57%,平均为40. 6%,Na~+占总离子6. 2%~93. 1%,平均为28. 6%;阴离子以HCO_3~-为主,占总离子82. 4%~98%,平均为89. 6%,而章谷温泉主要以HCO_3~-和Na~+为主,分别占阴阳离子的93. 1%和98%,TDS介于116. 11~372. 75 mg·L~(-1),均值281. 91 mg·L~(-1);地下水水化学类型为HCO_3~-Mg·Ca和HCO_3~-Ca·Mg型,水文地球化学过程受碳酸盐岩风化溶解控制;温泉受断裂带控制明显,主要发育在鲜水河主断层附近,水化学类型为HCO_3~-Na型,水文地球化学过程受硅酸盐岩溶解控制.  相似文献   

2.
为探明新集矿区深层地下水离子组成及其演化特征,采集了研究区砂岩水和太灰水等共20个水样,测试分析常规离子和氢氧同位素数据,采用Piper三线图、相关性分析、离子比例系数与饱和指数等方法,探讨了研究区深层地下水水化学特征及其成因。结果表明:(1)研究区砂岩水为高矿化度水,平均矿化度为2 743. 73mg/L,水化学类型主要为Cl-Na型,太灰水多为中矿化度水,平均矿化度为1 468. 33mg/L,水化学类型主要为HCO3·Cl-Na型和Cl-Na型;(2)研究区地下水的补给不仅有大气降水和地表水,还有古气候条件下形成的古溶滤-渗入水,且由于矿物质与深层地下水的水岩作用使得氧同位素发生漂移;(3)含水层中主要发生的水岩相互作用有硅酸盐和蒸发盐岩的溶解及阳离子交替吸附作用,盐岩和石膏在研究区地下水中是反应性矿物,白云石和方解石的溶解在矿区地下水中呈过饱和状态。  相似文献   

3.
采用Gibbs图解和端元分析方法研究了马莲河水化学特征、离子来源和化学风化作用,利用质量平衡正演模型评价了各风化作用对水化学组分的贡献率。结果表明,马莲河水为高TDS咸水,阳离子以Na~+、Mg~(2+)为主,阴离子以Cl~-、SO_4~(2-)为主;沿河水流向TDS降低,水化学类型由Cl-Na型演变为HCO_3·SO_4-Na·Mg型;河水化学组分的主要形成作用为化学风化,蒸发盐主导了流域风化过程,对离子组分平均贡献率高达76.5%,硅酸盐和碳酸盐风化较弱;化学风化具空间变异,从上游到下游,硫酸盐和碳酸盐贡献率增加,岩盐贡献率降低。岩性是控制流域化学风化作用的首要因素,降雨量和径流量可能也有一定影响。  相似文献   

4.
选择中国生态系统研究网络(CERN)和国家生态系统观测研究网络(CNERN)中的33个陆地生态站水化学监测数据,分析了2010~2015年我国典型陆地生态系统地下水、静止地表水和流动地表水水化学离子特征及空间分布.结果表明,水中主要阴离子质量浓度为:HCO_3~- SO_4~(2-) Cl~- CO_3~(2-),以HCO_3~-和SO_4~(2-)为主,在地下水、静止地表水、流动地表水中HCO_3~-和SO_4~(2-)之和分别约占阴离子总量的71. 7%、75. 3%和74. 9%;阳离子以Ca2+和Na+为主,两者之和分别约占阳离子总量的69. 7%、64. 8%和68. 9%.不同生态区域水体离子浓度和离子比例差异较大,水化学类型有地带性差异,即西北干旱半干旱区、东部黄淮海平原区生态系统地下水水化学类型以Na-Mg-SO4-Cl型为主,且水体矿化度较高;亚热带红壤丘陵区地下水水化学类型以Ca-SO_4-HCO_3型为主,地表水以Ca-HCO_3-SO_4型为主;南亚热带丘陵赤红壤区地下水水化学类型以NaCa-HCO_3-Cl型为主;其它生态系统水化学类型以Ca-HCO_3型和Ca-Mg-HCO_3为主.地下水、静止地表水和流动地表水的水化学类型年际间无明显变化.  相似文献   

5.
崇左响水地区岩溶地下水主要离子特征及控制因素   总被引:6,自引:5,他引:1  
以崇左响水地区为研究区域,于2016年丰水期、枯水期、平水期在研究区内采集210个地下水样品并测定,分析岩溶地下水的主要离子化学特征和季节变化,运用多元统计分析法研究地下水主要离子的控制因素.结果表明,研究区岩溶地下水为弱碱性淡水,优势离子均为Ca~(2+)、HCO_3~-为主,分别占全部阳离子和阴离子的75%、70%以上,K~+、Na~+、Cl~-和NO_3~-平均质量浓度表现为丰水期平水期枯水期,Ca~(2+)、Mg~(2+)、HCO_3~-、SO_4~(2-)、p H值、TDS、TZ+和TZ-未出现明显的季节性变化.受碳酸盐岩地层的控制,地下水化学类型以HCO_3~-Ca型为主,丰水期和平水期少部分水点为HCO_3·Cl-Ca和HCO_3·SO_4-Ca型水,平水期出现Cl·NO_3-Ca型水,枯水期可见HCO_3~-Ca·Mg型水,反映出少部分水点受地层中白云岩和铁质泥岩溶解、人类源NO_3~-和Cl~-的影响.地下水中Ca~(2+)、HCO_3~-主要来源于碳酸盐岩灰岩的溶解,Na~+、Cl~-、K~+、NO_3~-来源于大气输入与人为活动的贡献,Mg~(2+)、SO_4~(2-)来源于地层中白云岩、铁质泥岩溶解.地下水化学成分主要受水岩相互作用的控制,碳酸盐岩含水层中的地下水主要受碳酸盐岩溶解因子控制,村庄和人口密集区的地下水主要受大气输入与人为活动因子控制.  相似文献   

6.
为调查喜马拉雅山中段北坡地表水环境特征,2015年9月在叶如藏布流域采集24个地表水体水样并对其水化学特征分析测定,研究结果表明:(1)叶如藏布流域水化学特征存在显著空间差异.随着海拔升高,地表水体p H值、TDS值呈微弱的减小趋势.24个水样中23个水样属于淡水,1个为微咸水.(2)叶如藏布流域内地表水阳离子主要为Ca~(2+),阴离子以SO_4~(2-)为主,其次为HCO_3~-,即地表水为Ca~(2+)-SO_4~(2-)型.(3)叶如藏布流域地表水中各离子之间具有不同程度的相关性.其中Cl~-、HCO_3~-、Na~+和K~+4种离子共源性好;阳离子的来源不同,Na~+和K~+主要来源于碳酸氢盐,Ca~(2+)主要来源于硫酸盐,而Mg~(2+)的来源比较广泛.(4)叶如藏布流域大部分离子主要来源于陆地,受陆源影响从小到大排列顺序为:Na~+Mg~(2+)SO_4~(2-)Ca~(2+)K~+HCO_3~-.流域水文化学过程主要受岩石风化作用控制,特别是受到碳酸盐风化影响.以强木村为界,流域下游地区地表水化学特征受人类活动影响逐渐变大,特别是畜牧活动及人类施肥的影响.  相似文献   

7.
沁河冲洪积扇地下水水化学特征及成因分析   总被引:3,自引:1,他引:2  
为研究河南省济源市沁河冲洪积扇地下水水化学特征及其成因,2016年10月采集水样共计60组,其中地下水水样51组,地表水水样9组.运用数理统计、舒卡列夫分类、Piper三线图、Schoeller图、Gibbs图和离子比值等方法,分析了研究区内地下水和地表水水化学类型分布特征,讨论了地下水和表水水化学演化过程的主要控制因素.结果表明:(1)研究区地表水和地下水中主要阴阳离子为Ca~(2+)、Mg~(2+)、SO_4~(2-)、HCO_3~-,地表水和地下水的补给来源密切相关;(2)地下水水化学类型以HCO_3-Ca型、HCO_3-Ca·Mg型和HCO_3·SO_4-Ca·Mg型为主;地表水水化学类型以HCO_3·SO_4-Ca·Mg型为主;(3)地下水和地表水主要离子的形成主要受碳酸盐矿物风化溶解作用、离子交换作用和蒸发作用共同影响,硫酸、碳酸参与了碳酸盐矿物的风化溶解过程.  相似文献   

8.
充分辨识小屯煤矿充水条件是矿区防排水工作布置的关键。在梳理矿区水文地质结构的基础上,利用水化学和氢氧同位素方法分析了矿区不同含水层地下水的化学类型与水化学组成特征,辨识了不同含水层地下水与矿井水之间的水力联系,探讨矿井可能的充水来源。结果表明:以三叠系夜郎组玉龙山段岩溶裂隙含水层为代表的地下水主要表现为以HCO~-_3、Ca~(2+)为主要水化学组成,水化学类型为HCO_3-Ca型,且地下水中NO~-_3浓度偏高、较为富集重同位素,而矿井水表现为高浓度SO~2-_4、Na~+、TDS等水化学组成特征,水化学类型为SO_4·HCO_3-Na型,且矿井水中NO~-_3浓度普遍偏低、氢氧同位素组成偏轻,与二叠系长兴-大隆组、龙潭组等裂隙水水化学和氢氧同位素组成近似;小屯煤矿仍主要以二叠系长兴-大隆组、龙潭组等为主要充水含水层,两者之间水力联系密切,而局部通道可能受到上覆三叠系夜郎组玉龙山段岩溶裂隙水的影响。  相似文献   

9.
为明晰三江平原水环境特征,以乌苏里江流域左岸地下水为研究对象,通过对44组地下水样品进行水化学组分测试及水化学特征分析,探讨氧化还原条件对地下水水化学组分的控制作用,并利用反向水文地球化学模型解释地下水水化学组分的变化规律。结果表明:(1)乌苏里江流域左岸地下水呈弱酸性,浅层地下水阴离子以HCO_3型、Cl-HCO_3型和Cl-SO_4型为主,阳离子以Ca-Mg型、Ca-Mg-Na型和Ca-Na型为主,而深层地下水阴离子以HCO_3型为主,阳离子以Ca-Mg型为主;(2)地下水离子组成受岩石风化过程和大气降水因素的影响,浅层地下水中Na~+主要来源于岩盐的溶解,深层地下水中Na~+主要来源于钠长石的风化溶解,地下水中发生了阳离子交换作用,主要为Ca~(2+)和Mg~(2+)置换Na~+进入地下水中;(3)地下水处于弱氧化或还原环境,pH值与Eh值共同控制着氧化还原环境,反硝化作用显著;(4)水文地球化学模拟结果显示,浅层地下水中氧化-还原反应显著,地下水处于弱氧化环境时,水中铁锰矿物主要以游离态Fe~(2+)、Mn~(2+)存在,深层地下水处于较稳定的弱氧化-还原环境中,Eh值是控制地下水中Fe、Mn含量的主要因素。该研究结果可为三江平原东部乌苏里江流域左岸区域水土环境利用与保护、农业商品粮基地可持续发展提供依据。  相似文献   

10.
蛤蟆通河流域地下水化学特征及控制因素   总被引:16,自引:11,他引:5  
张涛  何锦  李敬杰  曹月婷  龚磊  刘金巍  边超  蔡月梅 《环境科学》2018,39(11):4981-4990
为研究蛤蟆通河流域水化学特征及主要离子来源,2017年先后采集地下水样品59组,综合运用数理统计、Piper三线图、Gibbs模型和离子比等方法,分析了蛤蟆通流域地下水的水文地球化学特征,并探讨了蛤蟆通流域的水化学演化规律及主要离子来源.结果表明,该区地下水阳离子以Ca~(2+)为主,占阳离子总量的质量分数为22. 1%~72. 4%,平均为48. 7%;阴离子以HCO_3~-为主,占阴离子总量的质量分数为35. 3%~97. 5%,平均为80%; TDS介于93. 3~521. 1 mg·L~(-1),平均值为219. 1 mg·L~(-1),均为淡水;地下水类型以HCO_3-Ca、HCO_3-Ca·Mg和HCO_3-Ca·Na型水为主;地下水样品均分布在Gibbs模型左中部,说明该流域水化学离子组成受岩石风化作用控制;通过离子来源分析,该区主要离子来源于硅酸盐岩和碳酸盐岩的风化溶解.  相似文献   

11.
柳林泉域岩溶地下水区域演化规律及控制因素   总被引:10,自引:8,他引:2  
柳林泉是山西省著名的十大岩溶大泉之一,丰富的岩溶地下水资源对吕梁地区经济社会发展具有支撑作用,开展岩溶地下水化学演化规律及控制因素研究对于流域水资源可持续利用意义重大.本研究对补给区、径流区、排泄区、深埋区的29个岩溶地下水主要离子组分进行测试分析.结果表明,水温、Na~+、Ca~(2+)、Mg~(2+)、Cl~-、HCO_3~-、SO_4~(2-)质量浓度从补给区、到径流区、到排泄区、再到深埋区,随着径流途径增加不断升高. K~+、Na~+、Cl~-主要来源于盐岩的溶解;而Ca~(2+)、Mg~(2+)、HCO_3~-、SO_4~(2-)主要来源于方解石、白云石和石膏的溶解.受控于盐岩、石膏的不断溶解,Na~+、C~l-和SO_4~(2-)质量浓度增加幅度大,最大值分别为最小值的50、80和32倍;受去白云化作用的影响,Ca~(2+)、HCO3-质量浓度变化不大,最大值仅为最小值的2~3倍.在补给区、径流区,Na~+、Cl~-质量浓度较低,Ca~(2+)和Mg~(2+)、HCO_3~-为主要阴阳子,但在排泄区和深埋区,Cl~-、Na~+明显超过了HCO_3~-、Ca~(2+)和Mg~(2+),成为最主要的阴阳离子;水化学类型由HCO_3-Ca·Mg型转化为HCO_3·SO_4-Ca·Mg型和HCO_3·SO_4-Ca·Na·Mg型,最终演变为Cl·HCO_3-Na·Ca、Cl·HCO_3-Na型和Cl-Na·Ca型.  相似文献   

12.
泾河支流地表水地下水的水化学特征及其控制因素   总被引:17,自引:16,他引:1  
寇永朝  华琨  李洲  李志 《环境科学》2018,39(7):3142-3149
为研究泾河支流(黑河流域)的水化学特征及其控制因素,2014~2015年先后采集枯水期及汛期地表水和地下水的水样242个,综合运用Piper三线图、相关性分析和Gibbs图等方法,分析了黑河流域水化学特征,并探讨了黑河流域的水化学演化规律.结果表明,研究区水体均呈弱碱性,2014年枯水期地表水和地下水阳离子以Na+为主,分别约占阳离子总量的56%和58%;阴离子以SO_4~(2-)为主,分别约占地表水和地下水阴离子总量的33%和39%;其它3个时期主要地表水和地下水组成阴阳离子均以HCO_3~-和Na~+为主,约占阴离子和阳离子总量的44%~46%和42%~56%.枯水期地表水TDS在上中游波动较大,汛期地表水和地下水的TDS由上游到下游沿河道逐渐增加.由枯水期到汛期,地表水的水化学类型由Na-Mg-Cl-SO4型转变为Ca-Mg-HCO3型,地下水由Mg-Cl-SO_4型转变为Ca-Na-HCO_3型.水化学样品点大部分分布在Gibbs图左中上部,说明流域水化学离子形成主要受岩石风化和蒸发-浓缩作用的影响,而人类活动对水化学的影响在枯水期较汛期更显著.  相似文献   

13.
吕晓立  刘景涛  韩占涛  周冰  朱亮  陈玺 《环境科学》2020,41(3):1197-1206
随着经济的发展,新疆塔城盆地地下水开采量持续增大,然而研究区水文地质研究基础薄弱,盆地地下水化学演化趋势及其成因不明,这使得未来的地下水开发利用存在较大风险.本文在对盆地内地下水进行系统采样分析的基础上,基于5种水化学图对地下水化学组分进行异常识别,并对比历史水化学数据,对盆地地下水化学演变进行了深入分析.结果表明:研究区地下水阳离子以Ca~(2+)和Na~+为主,阴离子以HCO~-_3和SO_4~(2-)为主,盆地广泛分布溶解性总固体小于1.0 g·L~(-1)的淡水.从山前淋溶迁移带到地下水径流缓慢的平原区,地下水化学类型由HCO_3-Ca和HCO_3·SO_4-Ca·Mg型过渡到SO_4·HCO_3-Na·Ca型.对比1979年水化学数据,城镇化进程中,由于地下水的过量开采,水位埋深下降,原来的部分排泄区变为径流区,水循环交替加快,致使研究区HCO_3型和SO_4·HCO_3型水分布面明显增加,以硫酸根和氯离子为主的高TDS水化学类型分布面积明显减少.然而在城镇周边人口密集区地下水中水氯离子和硝酸根离子明显升高,地下水TDS和总硬度呈上升趋势,地下水盐化和硬化明显.研究区地下水化学演变主要受潜水流经的含水层介质及地下水流场变化影响,另外排污沟渠污水下渗是影响地下水水质的另一个主要因素.  相似文献   

14.
地下水是岩溶易旱区极其重要的水资源,是当地生态环境和人类生存的基本保障。通过收集整理岩溶易旱区兴仁县地下水水化学数据,分析与研究,发现岩溶易旱区地下水的溶解组分主要来源于碳酸盐岩的溶蚀,水化学类型主要为HCO_3-Ca型和HCO_3-Ca·Mg型,部分地区由于受到岩层中石膏夹层溶解的影响,水化学类型为HCO_3·SO_4-Ca·Mg型。地下水中Ca~(2+)、Mg~(2+)、HCO_3~-等离子受流经区域地层岩性和水-岩相互作用的影响,表现出显著的区域性特征,属自然来源;K~+、Na~+、Cl~-、NO_3~-等指标与人类活动关系密切,SO_4~(2-)受水-岩相互作用和人类活动共同影响。岩溶易旱区地下水水文地球化学容易受到人为活动的干扰且日趋明显,降低人为活动对岩溶地下水的影响是确保岩溶易旱区地下水环境及饮水安全的关键。  相似文献   

15.
额尔齐斯河源区融雪期积雪与河流的水化学特征   总被引:6,自引:4,他引:2  
在2014年3~4月期间,在连续收集了融雪期额尔齐斯河正源-卡依尔特斯河河水和冰雪融水水样的基础上,综合运用描述性统计、Gibbs分析图和Piper三线图等方法,对卡依尔特斯河融雪期径流中水化学特征其控制因素等进行了分析.研究区不同水体在融雪期内,主离子组成以及水化学类型差异显著.河水中总溶解固体(TDS)含量变化范围为24.9~50.3mg·L-1;河水中的优势阳离子为Ca~(2+)和Na~+,分别占阳离子总量的61%和17%,河水中优势阴离子为HCO_3~-,占阴离子总量的95%.河水的水化学类型为HCO_3~--Ca~(2+).地表水样品的水化学组成落在Gibbs分布模型的中部偏左下部分,表明研究区的水化学离子组成受到岩石风化作用和大气降水作用的共同影响,且岩石风化作用占主导.  相似文献   

16.
抚河汇流于中国第一大淡水湖鄱阳湖,也是长江中下游的重要支流,其河流水化学组成代表了典型的硅酸盐岩地区河流风化特征。本研究于2019年1月对抚河流域进行了系统的采样分析,通过离子的主成分分析、离子比值分析等方法对流域河水水化学空间变化、控制因素和主要离子来源进行了研究。结果表明,K~+、Na~+和HCO_3~-为抚河流域水体的主要阳离子和阴离子,分别占总阳离子和总阴离子的67.0%和61.4%。TDS平均值为49.51 mg/L,低于世界河流平均值。控制流域水化学特征的主要因素是硅酸盐岩风化,同时也受降雨补给和水分蒸发的影响,其中海洋来源占总的河流比例为7.35%。Cl~-、HCO_3~-、SO_4~(2-)主要受农业化肥、工业污染及市政排放等影响,且不同地段的来源具有显著差别。由上游至下游,河流水化学中SO_4~(2-)、Cl~-不断增加,表明受人类活动的影响较大。  相似文献   

17.
年楚河流域是西藏发达的农业区,有"西藏粮仓"之称,对区域经济发展起着决定性的作用。然而对该流域水体水化学的系统研究鲜见报道。为揭示年楚河流域水化学特征及其控制因素,本研究于2018年11月(平水期)对年楚河主干流及其主要支流的水体理化参数、主要离子和微量元素进行分析研究。结果表明,年楚河流域水体总体呈弱碱性,总溶解性固体、电导率和矿化度均值分别为275.64 mg/L、389.06μS/cm和172.71 mg/L,且空间上均表现为自上游至下游递增的趋势。主干流及其主要支流阳离子以Ca~(2+)为主,占阳离子总量的71.45%,阴离子则以HCO_3~-为主,占阴离子总量的63.21%。河水主要离子浓度在空间上表现出一定的差异性,整体上主干流自上游至下游有逐渐递增趋势,河口段则相对平稳。年楚河三个主要源头湖泊区域中,错嘎布和冲巴雍错及下游出水口附近水体水化学类型主要为HCO_3-Ca型,桑旺湖及主干流上中游和雅鲁藏布江汇入口附近河段水化学类型为HCO_3·SO_4-Ca·Mg型,而下游区域,包括支流冲巴涌曲下游和龙马河的水化学类型主要为HCO_3·SO_4-Ca型。流域内碳酸盐岩和硅酸盐岩的风化作用是控制整个流域水化学特征的主要因素,且自源头区到下游河段其主导控制风化作用由碳酸盐岩逐渐过渡为硅酸盐岩。流域内以农业为主的人类活动对河流水环境造成的潜在影响不可忽视。  相似文献   

18.
奥陶系碳酸盐岩是华北板块普遍且优质的中低温传导型热储层,以其独特的岩溶作用、高产量、低盐度、易回灌的特性而受到关注。对华北板块27眼奥陶系碳酸盐岩地热井进行水化学组分分析,将华北板块奥陶系碳酸盐岩地热水划分为3组:边山岩溶系统地热水,地热井深约600~2 100 m,地热水的水化学类型多为HCO_3-Na、SO_4·HCO_3-Ca·Na、SO_4-Ca型水,SO■离子含量较高,说明地热水中除石膏类矿物溶解生成SO■离子外,可能还存在黄铁矿、H_2S被氧化的现象;过渡岩溶系统地热水,地热井深约2 100~2 700 m,地热水的水化学类型主要为Cl·HCO_3-Na型水,随着井深的增加Cl~-离子含量也相对增高;深埋岩溶系统地热水,地热井深多大于2 700 m,地热水的水化学类型为Cl-Na型水,Cl~-离子含量较高,说明深埋岩溶系统地热水中除岩盐溶解生成Cl~-离子外,且随着温度和压力的改变,碳酸盐、硅酸盐、硫酸盐等矿物的溶解度下降而被析出,局部还可能存在封闭水。此外,结合华北板块奥陶系碳酸盐岩地热水的水化学特征、水化学类型与井深的关系以及特征系数的分析,提出了华北板块奥陶系碳酸盐岩热储形成机制的概念模型。  相似文献   

19.
牟汶河中上游孔隙水化学特征及控制因素   总被引:1,自引:0,他引:1  
为研究牟汶河中上游孔隙水水化学特征及离子来源,在牟汶河中上游莱芜盆地采集了孔隙水样品29组,综合利用相关性和主成分分析、 Piper三线图和Gibbs图集离子比值等方法,分析了该区孔隙水主要离子特征及其控制因素,揭示了该区孔隙水中的主要物质来源.结果表明,牟汶河中上游孔隙水阴阳离子以HCO-3、 NO-3、 SO42-和Ca2+为主;以TDS>1 000 mg·L-1为标准,正常值点水化学类型主要为HCO3·NO3·SO4-Ca和HCO3·SO4-Ca·Mg型水,异常值点水化学类型主要为NO3·Cl-Ca型水.地下水化学演化过程主要受岩石风化、阳离子交替吸附和人类活动影响,Na++K+主要来自硅酸盐风化溶解作用,HCO-  相似文献   

20.
乌江中上游段河水主要离子化学特征及控制因素   总被引:12,自引:10,他引:2  
开展人类活动影响下乌江中上游段河流水化学特征研究,有助于流域地表水资源有效开发利用和保护.本文采用主成分分析法对乌江中上游段的六冲河、三岔河、猫跳河、清水河的主要离子化学特征及控制因素进行了定量评价.结果表明,乌江上游段4条河流优势阳离子均为Ca~(2+)、Mg~(2+),两者占全部阳离子的70%以上,阴离子以HCO~-_3、SO~(2-)_4为主,两者占总阴离子的85%以上.与乌江1999年水化学数据相比,本次样品的阴阳离子浓度出现了明显增加,主要表现在NO~-_3、SO~(2-)_4等受人为活动影响显著的离子方面.受流域碳酸盐岩地层的控制,4条河流水化学类型以HCO_3~-Ca为主,少部分样点为HCO_3·SO_4-Ca型,反映出部分样点可能受到人类源的SO~(2-)_4影响.河水中Na~+、K~+、Cl~-主要来源于大气输入,Ca~(2+)、HCO~-_3、Mg~(2+)主要来源于碳酸盐岩的溶解;NO~-_3和SO~(2-)_4主要来源于人为活动.主成分分析法和相关分析得出:六冲河、三岔河、清水河上游水化学成分主要受大气降水及碳酸盐岩的溶解因子的控制,向下游受人为活动因子影响均增强;猫跳河上游、下游水化学组成主要受大气降水及碳酸盐岩的溶解控制,而中游湖泊受人为活动影响明显.清水河支流南明河中下游水化学组成主要受人为活动因子控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号