首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated that water washing effects on the metals emission reduction in melting of municipal solid waste incinerator (MSWI) fly ash. Experimental conditions were conducted at liquid-to-solid (L/S) ratio 10, 20, and 100 for water-washing process and its subsequent melting treatment at 1450 °C for 2 h. The simple water-washing process as a pre-treatment for MSWI fly ash can remove most of the chlorides, leachable salts, and amphoteric heavy metals from the MSWI fly ash, resulting in the washed ash having lowered chlorine content. MSWI fly ashes washed by L/S ratio 10 and above that were melted at 1450 °C produced slag containing relatively high vitrificaton ratio of Cu and Pb. Besides, the vitrification ratios of Na, K, Ca, and Mg in washed MSWI fly ash were also higher than that of MSWI fly ash. The results indicated that washed MSWI fly ash can reduce the emission of metallic chlorides during its subsequent melting treatment.  相似文献   

2.
Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25–207 kg CO2-eq t?1 rw. Within all process stages, the emission of fossil CO2 from the combustion of MSW was the main contributor (111–254 kg CO2-eq t?1 rw), while the substitution of electricity reduced the GHG emissions by 150–247 kg CO2-eq t?1 rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.  相似文献   

3.
About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO2, biogenic CO2, CH4, and avoided CO2 as the main objects is discussed respectively. The results show that the total CO2-eq is about 1133 kg/t DM (including the biogenic CO2), while the net CO2-eq is about 372 kg/t DM (excluding the biogenic CO2). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO2-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO2-eq reduction.  相似文献   

4.
Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.  相似文献   

5.
This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9–1.2 g cm?3 and 50–60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m?1 K?1. Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications.  相似文献   

6.
The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP100), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO2-eq. tonne?1 to net saving of 670 kg CO2-eq. tonne?1 of MSWM.  相似文献   

7.
Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.  相似文献   

8.
Fresh leachate, generated in municipal solid waste incineration (MSWI) plants, contains various pollutants with extremely high strength organics, which usually requires expensive and complex treatment processes. This study investigated the feasibility of blending treatment of MSWI leachate with municipal wastewater. Fresh MSWI leachate was pretreated by coagulation–flocculation with FeCl3 2 g/L and CaO 25 g/L, plate-and-frame filter press, followed by ammonia stripping at pH above 12. After that, blending treatment was carried out in a full-scale municipal wastewater treatment plant (WWTP) for approximately 3 months. Different operational modes consisting of different pretreated leachate and methanol addition levels were tested, and their performances were evaluated. Results showed that throughout the experimental period, monitored parameters in the WWTP effluent, including COD (<60 mg/L), BOD5 (<20 mg/L), ammonium (<8 mg/L), phosphorus (<1.5 mg/L) and heavy metals, generally complied with the Chinese sewage discharged standard. Under the experimental conditions, a certain amount of methanol was needed to fulfill TN removal. An estimation of the operation cost revealed that the expenditure of blending treatment was much lower than the total costs of respective treatment of MSWI leachate and municipal wastewater. The outcomes indicated that blending treatment could not only improve the treatability of the MSWI leachate, but also reduce the treatment cost of the two different wastewaters.  相似文献   

9.
The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR (27Al and 29Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.  相似文献   

10.
A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.  相似文献   

11.
The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6–3.5 kg week?1 and the temperature inside the composting units was in all cases only a few degrees (2–10 °C) higher than the ambient temperature. The emissions of methane (CH4) and nitrous oxide (N2O) were quantified as 0.4–4.2 kg CH4 Mg?1 input wet waste (ww) and 0.30–0.55 kg N2O Mg?1 ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH4 and N2O emissions) of 100–239 kg CO2-eq. Mg?1 ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH4 during mixing which was estimated to 8–12% of the total CH4 emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg?1 ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO2-eq. Mg?1 ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.  相似文献   

12.
GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from ?290 kg CO2 e (glass) to ?19 111 kg CO2 e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.  相似文献   

13.
Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na2CO3 at different melting temperatures and melting times. The optimum Na2CO3 dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.  相似文献   

14.
The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG–MS) analysis of the gaseous thermal decomposition products. Results of TG–MS analysis on RDF-I BA indicated that the LOI measured at 550 °C was due to moisture evaporation and dehydration of Ca(OH)2 and hydrocalumite. Results for the HW-I BA showed that LOI at 550 °C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO3 around 700 °C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO3 contents of the HW-I BA during TG–MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)2 in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650 °C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash.  相似文献   

15.
Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65–90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500–1000 kg of bottom ash and up to 9.2 N m3/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 N m3/(h tBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5–99%.  相似文献   

16.
Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO2 accounts showed significantly different results: waste incineration in one network caused a CO2 saving of 48 kg CO2/GJ energy input while in the other network a load of 43 kg CO2/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.  相似文献   

17.

Incineration is one of the key technologies in disposal of municipal waste, which produces municipal solid waste incineration (MSWI) residues with high valuable metal contents. The recycling strategy for the MSWI residues is typically focused on the recovery of scrap metals yielding processed municipal solid waste incineration residues (PIR) as the main byproduct. However, the PIR still contains valuable metals, particularly gold, which cannot be extracted by conventional methods. Here, we evaluated the feasibility of using the 0.5–2.0 mm grain size fraction of PIR containing 28.82 ± 1.62 mg/kg of gold as raw material for a two-stage extraction process. In the first stage the alkalic fine-grained PIR was acidified with a solution of 20% (v/v) of HCl-containing flue gas cleaning liquid that is obtained by the municipal waste incineration plant itself as a waste product. In the second stage we leached the acidified fine-grained PIR by thiourea with Fe3+ as an oxidant. Application of the thiourea-Fe3+ leaching system resulted in recovery of 16.4 ± 1.56 mg/kg of gold from the fine-grained PIR within 6 h of incubation. Due to high gold market prices, upscaling of the suggested technology can represent a suitable strategy for gold recovery from PIR and other MSWI residues.

  相似文献   

18.
Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.  相似文献   

19.
With large quantity of flux (Na2CO3), lead can be recovered from the funnel glass of waste cathode-ray tubes via reduction–melting at 1000 °C. To reduce flux cost, a technique to recover added flux from the generated oxide phase is also important in order to recycle the flux recovered from the reduction–melting process. In this study, the phase separation of sodium and the crystallization of water-soluble sodium silicates were induced after the reduction–melting process to enhance the leachability of sodium in the oxide phase and to extract the sodium from the phase for the recovery of Na2CO3 as flux. A reductive atmosphere promoted the phase separation and crystallization, and the leachability of sodium from the oxide phase was enhanced. The optimum temperature and treatment time for increasing the leachability were 700 °C and 2 h, respectively. After treatment, more than 90% of the sodium in the oxide phase was extracted in water. NaHCO3 can be recovered by carbonization of the solution containing sodium ions using carbon dioxide gas, decomposed to Na2CO3 at 50 °C and recycled for use in the reduction–melting process.  相似文献   

20.
The objective of this study was to determine whether the fear of dioxin/furan emissions from waste-to-energy plants was justified by the 2007 status of emissions of French municipal solid waste incinerators (MSWIs). All emissions were examined, plant by plant, but this paper focuses on the incinerator emission that is most frequently mentioned in the French media, toxic dioxins and furans. The study showed that there are 85 large MSWI that generate electricity or heat, i.e., waste-to-energy (WTE) plants, and 39 smaller MSW incinerators. The results showed that all French MSWI are operated well below the EU and French standard of 0.1 ng TEQ Nm?3 (toxic equivalent nanograms per standard cubic meter) and that their total dioxin/furan emissions decreased from 435 g TEQ in 1997 to only 1.2 g in 2008. All other industrial emissions of dioxins have also decreased and the major source is residential combustion of wood (320 g TEQ). It was extremely difficult to obtain MSWI emission data. This unwarranted lack of transparency has resulted in the public perception that MSWI plants are major contributors to dioxin emissions while in fact they have ceased to be so.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号