首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The objective of this work is the study of pyrolysis as a feedstock recycling process, for valorizing the rejected streams that come from industrial plants, where packing and packaging wastes are classified and separated for their subsequent mechanical recycling. Four real samples collected from an industrial plant at four different times of the year, have been pyrolysed under nitrogen in a 3.5 dm3 autoclave at 500 °C for 30 min. Pyrolysis liquids are a complex mixture of organic compounds containing valuable chemicals as styrene, ethyl-benzene, toluene, etc. Pyrolysis solids are composed of the inorganic material contained in the raw materials, as well as of some char formed in the pyrolysis process, and pyrolysis gases are mainly composed of hydrocarbons together with some CO and CO2, and have very high gross calorific values (GCV).It has been proved by the authors that the composition of the raw material (paper, film, and metals contents) plays a significant role in the characteristics of pyrolysis products. High paper content yields water in the pyrolysis liquids, and CO and CO2 in the gases, high PE film content gives rise to high viscosity liquids, and high metals content yields more aromatics in the liquid products, which may be attributed to the metals catalytic effect.  相似文献   

2.
The interaction of parameters determining the potential emissions of two different mechanically-biologically pretreated municipal solid wastes (MBT wastes) is elucidated in this work. The origins of the wastes are Germany and Sweden. By means of lab-scale experiments, increased stabilisation through composting is preferably determined by a decrease in respiration activity. Concurrently, the stabilisation is verified for the leachates by a decrease in COD, DOC, and BOD(5). Total organic carbon content reflects stabilisation less accurately. FT-IR and thermal analytical methods add valuable information about the state of degradation, especially when several distinct thermal parameters are taken into account. Mobility of Cr, Ni, Pb, and Zn produced by a batch leaching test with deionized water is reduced by the pretreatment of both materials. Mobility of copper unambiguously increased. A principle component analysis (PCA) of membrane fractionated leachates indicates an affinity of Cu to mobile humic acids or dissolved organic carbon. High Cr, Zn, and Ni contents in the solid co-occur with high contents of solid humic acids. To a lesser extent, this is also true for solid Cd, Cu, and Pb contents. Due to differences in required landfilling conditions, actual emissions and after-care phase length will depend on whether each waste is landfilled in Germany or Sweden.  相似文献   

3.
The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr–Ni; anthropogenic agricultural and urban: Cu–Zn; anthropogenic urban: Cd–Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn.  相似文献   

4.
In this work, the results obtained in catalytic pyrolysis of three plastic waste streams which are the rejects of an industrial packing wastes sorting plant are presented. The samples have been pyrolysed in a 3.5 dm(3) reactor under semi-batch conditions at 440 °C for 30 min in nitrogen atmosphere. Commercial ZSM-5 zeolite has been used as catalyst in liquid phase contact. In every case, high HHV gases and liquids which can be useful as fuels or source of chemicals are obtained. A solid fraction composed of the inorganic material contained in the raw materials and some char formed in the pyrolysis process is also obtained. The zeolite has shown to be very effective to produce liquids with great aromatics content and C3-C4 fraction rich gases, even though the raw material was mainly composed of polyolefins. The characteristics of the pyrolysis products as well as the effect of the catalyst vary depending on the composition of the raw material. When paper rich samples are pyrolysed, ZSM-5 zeolite increases water production and reduces CO and CO(2) generation. If stepwise pyrolysis is applied to such sample, the aqueous liquid phase can be separated from the organic liquid fraction in a first low temperature step.  相似文献   

5.
Microbial biomass in a soil amended with different types of organic wastes.   总被引:1,自引:0,他引:1  
Application of different types of organic wastes may have a marked effect on soil microbial biomass and its activity. The objective of this study was to quantify the amount of microbial biomass in a loamy-clayey soil, amended with different types of organic waste residues (composts of municipal solid waste of different ages, sewage sludge and farmyard manure) and incubated for 8 weeks at 25 degrees C and two-thirds of field capacity, using the fumigation-extraction method. Both microbial biomass-C and -N (BC and BN, respectively) appeared to be dependent on the type of organic waste residues, on their degree of stability, and on their chemical characteristics. In general, organic wastes increased the microbial biomass-C content in the soil and the microbial BC was positively correlated with the organic C content, the C/N, neutral detergent fibre/N (NDF/N) and acid detergent fibre/N (ADF/ N) ratios. The microbial biomass content decreased according to the period of incubation, especially when the compost used was immature. The microbial biomass-N was positively correlated with the total N and percentage of hemicellulose. The microbial biomass-C was linearly related with the microbial biomass-N and the ratio BC/BN was exponentially related with the BC.  相似文献   

6.
Several urban wastes of different nature and level of organic matter stability (municipal solid wastes, sewage sludges and composts) have been characterized analysing fertility and phytotoxicity parameters. Sewage sludges showed the highest N and P values of all the wastes. The total K content of the wastes was low but almost all was available to plants. Mature composts had the lowest organic carbon and humic substances values as a consequence of organic matter mineralization during the composting process. The soluble C at pH 2/precipitated C ratio decreased as the stability of the organic matter increased. In spite of the heterogeneity of the wastes analysed, the organic matter/total organic C ratio was largely constant with a mean value of 2.05. In no case did the heavy metal levels exceed the maximum allowed by the EU disposition for sewage sludges use in agriculture. The highest levels of phytotoxic substances occurred in the fresh wastes. The germination rates and root length were highest with mature composts. Germination index and root length were negatively correlated with water soluble carbon (WSC) and WSC/N ratio. The principal component analysis showed that extractable C, soluble C at pH 2 and water soluble C were the C fractions which most contributed to the total variability.  相似文献   

7.
Several organic wastes of major production in the world (municipal solid wastes, wastewater sludge, manures and bulking agents) and some already treated organic wastes have been investigated to determine the partition among the several fractions that compose them and their kinetics of biodegradation. Different literature models have been explored for their suitability to predict the behaviour in respiration studies of these wastes. All the models presented limitations related to their simplicity or their excessive complexity, which makes them unsuitable for reliable and fast studies at real scale. A new model based on the rapid, the slowly and the inert organic fractions has been tested for all the wastes, showing excellent correlations with actual respiration activity. Finally, the kinetic parameters for this model in its application to all the wastes studied are presented.  相似文献   

8.
In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C32NH55O16.  相似文献   

9.
In this experiment, three microbial strains were inoculated in two different organic wastes to study their effect on the humic acids content, acid phosphatase activity and microbial properties of the final stabilized products. Pyrophosphate extract of vermicomposts were analyzed through polyacrylamide gel electrophoresis to study the nature of a isozymes in different treatments. Results suggested that vermicomposting increased humic acids content and acid phosphatase activity in organic substrates and microbial inoculation further enhanced the rate of humification and enzyme activity. Although humic acids content in different microorganism-inoculated vermicomposts were statistically at par, acid phosphatase activity in these treatments was significantly (P<0.05) different. Results revealed that microbial respiration was increased due to vermicomposting, but a reduction in microbial biomass was recorded after stabilization of organic wastes. Although vermicomposting increased the value of microbial quotient (qCO(2)), microbial inoculation did not show any significant effect on qCO(2). The zymogram revealed that two isozymes of acid phosphatase (group II and group III) were present in all vermicompost samples and higher acid phosphatase activity in fungi-inoculated vermicomposts might be due to the presence of an additional isozyme (group I) of acid phosphatase.  相似文献   

10.
Modelling agronomic properties of Technosols constructed with urban wastes   总被引:2,自引:0,他引:2  
The greening of urban and suburban areas requires large amounts of arable earth that is a non-renewable resource. However, concentration of population in cities leads to the production of high amounts of wastes and by-products that are nowadays partly recycled as a resource and quite systematically exported out of urban areas. To preserve natural soil resources, a strategy of waste recycling as fertile substitutes is proposed. Eleven wastes are selected for their environmental harmlessness and their contrasted physico-chemical properties for their potential use in pedological engineering. The aim is (i) to demonstrate the feasibility of the formulation of fertile substrates exclusively with wastes and (ii) to model their physico-chemical properties following various types, number and proportions of constitutive wastes. Twenty-five binary and ternary combinations are tested at different ratios for total carbon, Olsen available phosphorus, cation exchange capacity, water pH, water retention capacity and bulk density. Dose–response curves describe the variation of physico-chemical properties of mixtures depending on the type and ratio of selected wastes. If these mixtures mainly mimic natural soils, some of them present more extreme urban soil features, especially for pH and POlsen. The fertility of the new substrates is modelled by multilinear regressions for the main soil properties.  相似文献   

11.
有机固体废物生物法制氢的研究进展   总被引:1,自引:0,他引:1  
综述了利用有机固体废物生物法制氢的原理和研究现状。城市有机固体废物、农业有机废物、工业有机废物是生物法制氢的主要原料。暗发酵制氢是利用有机废物厌氧消化的产酸阶段而产氢,pH、温度、水力停留时间、氢气分压、原料性质、微量元素含量、产甲烷微生物抑制剂等均影响氢气产率。光发酵制氢是利用光合厌氧细菌将挥发性有机酸转化为氢气和二氧化碳。暗发酵和光发酵制氢时,生物固定化有利于高速连续产氢。在有机废物处理和生物法制氢方面,暗发酵一光发酵、暗发酵一微生物燃料电池的组合工艺是具有前景的技术。今后的研究方向是原料的预处理技术、选育高效产氢菌株、发明高效反应器、优化处理工艺和处理条件等。  相似文献   

12.
This discussion explores the possibility of having a measure of the biodegradable organic carbon content in solid wastes. Currently, indirect measures for determining the concentration of biodegradable organic matter are being used and most of them are based on respiration indices (oxygen consumption or carbon dioxide production) or chemical parameters (volatile solids or total organic carbon). The results obtained for the cumulative carbon dioxide production in composting experiments can be expressed as "aerobic biodegradable carbon" for the wastes that were studied. The calculation of a useful biodegradable C/N can also be obtained from the aerobic biodegradable carbon content. A comparison with some results obtained in measuring the concentration of "anaerobic biodegradable carbon" also is presented.  相似文献   

13.
The second and third steps of wastewater treatment in the tanning industry generate sludges that are rich in salts, organic matter and suspended solids. Since these are formally catalogued as industrial wastes by environmental legislation, they cannot be disposed of directly but need a final treatment. One of the problems with these wastes is their high water content, which has to be reduced. In the particular case of the concentrated streams from the secondary and tertiary treatment steps, the sludges are first concentrated by evaporation, and the evaporated water is used in other parts of the plant. This study, which preceded evaporator design, analysed the evaporation process (laboratory scale) of a saline residue produced in the reverse osmosis step of the treatment of tanning wastewaters by the company Aquagest Levante, S.A. in Lorca (Murcia, Spain), to ascertain its behaviour in the evaporation process and the evolution of its physical properties. The study served to determine the exact mineralogy and ionic composition as well as the characteristics of the waste in question. This information was used in the last step of the design of the evaporation equipment.  相似文献   

14.
A field study to evaluate the performance of three commercially available particulate matter (PM) continuous emission monitors (CEMs) was conducted in 1999-2000 at the US Department of Energy (DOE) Toxic Substances Control Act (TSCA) Incinerator. This study offers unique features that are believed to enhance the collective US experience with PM CEMs. The TSCA Incinerator is permitted to treat PCB-contaminated RCRA hazardous low-level radioactive wastes. The air pollution control system utilizes MACT control technology and is comprised of a rapid quench, venturi scrubber, packed bed scrubber, and two ionizing wet scrubbers in series, which create a saturated flue gas that must be conditioned by the CEMs prior to measurement. The incinerator routinely treats a wide variety of wastes including high and low BTU organic liquids, aqueous, and solid wastes. The various possible combinations for treating liquid and solid wastes may present a challenge in establishing a single, acceptable correlation relationship for individual CEMs. The effect of low-level radioactive material present in the waste is a unique site-specific factor not evaluated in previous tests. The three systems chosen for evaluation were two beta gauge devices and a light scattering device. The performance of the CEMs was evaluated using the requirements in draft Environmental Protection Agency (EPA) Performance Specification 11 (PS11) and Procedure 2. The results of Reference Method 5i stack tests for establishing statistical correlations between the reference method data and the CEMs responses are discussed.  相似文献   

15.
The TAO model of Transformation of Added Organic materials (AOM) calibrated on AOMs and substrates of temperate areas was used to assess the transformations in soil of carbon and nitrogen forms of AOMs: raw materials, selected mixtures and composts from Ouagadougou urban wastes. AOMs were studied in terms of chemical and biochemical contents and for their C and N mineralization during incubations in a typical Ferric Lixisol of the sub-urban agriculture of Ouagadougou. The TAO model was used to predict the transformations of C (very labile, resistant and stable organic C) and N (very labile, resistant and stable organic N, produced and immobilized inorganic N) forms driven by AOM biochemical data. Without any change in calibration formulae, TAO predicted accurately the C transformations and inorganic N production of most of the tested AOMs, with a tendency to slightly overestimate C mineralization of previously well-composted materials and re-mineralization of immobilized N. Complementary adjustments using more complete data from laboratory experiments are suggested, but the model agrees with other data collected in the field and appears as a promising tool to optimise the management of urban wastes in the tropical area as well as for agro industrial organic fertilizers of the temperate zone. This application suggests ways to improve the management of urban wastes aiming to optimize agricultural yields, system sustainability and C sequestration in soil.  相似文献   

16.
The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO2 respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.  相似文献   

17.
Nowadays the composting process has shown itself to be an alternative in the treatment of municipal solid wastes by composting plants. However, although more than 50% of the waste generated by the Brazilian population is composed of matter susceptible to organic composting, this process is, still today, insufficiently developed in Brazil, due to low compost quality and lack of investments in the sector. The objective of this work was to use physical analyses to evaluate the quality of the compost produced at 14 operative composting plants in the Sao Paulo State in Brazil. For this purpose, size distribution and total inert content tests were done. The results were analyzed by grouping the plants according to their productive processes: plants with a rotating drum, plants with shredders or mills, and plants without treatment after the sorting conveyor belt. Compost quality was analyzed considering the limits imposed by the Brazilian Legislation and the European standards for inert contents. The size distribution tests showed the influence of the machinery after the sorting conveyer on the granule sizes as well as the inert content, which contributes to the presence of materials that reduce the quality of the final product.  相似文献   

18.
Carbonization is a kind of pyrolysis process to produce char from organic materials under an inert atmosphere. In this work, chars derived from various solid wastes were characterized from the standpoint of fuel recovery and pretreatment of waste before landfilling. Sixteen kinds of municipal and industrial solid wastes such as residential combustible wastes, non-combustible wastes, bulky wastes, construction and demolition wastes, auto shredder residue, and sludges were carbonized at 500 degrees C for 1h under nitrogen atmosphere. In order to evaluate the quality of char as fuel, proximate analysis and heating value were examined. The composition of raw waste had a significant influence on the quality of produced char. The higher the ratio of woody biomass in waste, the higher heating value of char produced. Moreover, an equation to estimate heating value of char was developed by using the weight fraction of fixed carbon and volatile matter in char. De-ashing and chlorine removal were performed to improve the quality of char. The pulverization and sieving method seems to be effective for separation of incombustibles such as metal rather than ash. Most char met a 0.5 wt% chlorine criterion for utilization as fuel in a shaft blast furnace after it was subjected to repeated water-washing. Carbonization could remove a considerable amount of organic matter from raw waste. In addition, the leaching of heavy metals such as chrome, cadmium, and lead appears to be significantly suppressed by carbonization regardless of the type of raw waste. From these results, carbonization could be considered as a pretreatment method for waste before landfilling, as well as for fuel recovery.  相似文献   

19.
Using solid state 13C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.  相似文献   

20.
The organic fraction of municipal solid wastes in Southeast Asia, which has a high moisture content, accounts for a large proportion of total waste. Local governments need to pay adequate attention to the composition of wastes to determine alternative waste management technologies. This study proposed the use of a triangle diagram to describe changes in proximate composition and rates of successful source separation of municipal solid waste and to identify technical challenges about alternative waste management technologies such as incineration, composting, and refuse-derived fuel production based on physical and proximate composition analysis of household waste sampled in Hanoi, Vietnam, as a case study. The analysis indicated the effectiveness of different types of source separation as well as different levels of successful achievement of source separation as an adjustment mechanism for the proximate composition of waste. Proper categorization of wastes for source separation is necessary for the appropriate use of alternative waste management technologies. The results showed that, at a source separation rate of just greater than 0.52 in a three-way separation scheme, the waste separated as combustible waste would be suitable for incineration with energy recovery. Based on well-designed schemes of source separation, alternative waste management technologies can be applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号