首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The rate at which liquids can be added to a vertical well, the lateral zone of impact of the well, and the liquids volume needed to wet the waste within the zone of impact of the well are the key inputs needed to design a vertical well system. This paper presents design charts that can be used to estimate these inputs as a function of municipal solid waste properties (porosity, hydraulic conductivity, and anisotropy ratio), well dimensions (radius and screen length), and injection pressure. SEEP/W modeling was conducted to estimate the key design inputs for a range of conditions practically encountered for a vertical well installed in landfilled waste. The flow rate, lateral zone of impact of a well, liquids volume added, and injection pressure were normalized with the waste properties and well dimensions to formulate dimensionless variables. A series of design charts were created to present dimensionless steady-state flow rate, lateral zone of impact, and the dimensionless liquid volume needed to reach a steady-state condition, as a function of dimensionless input variables. By using dimensionless variables formulated for this work, these charts permit the user to estimate the steady-state design variables described above for a wide range of configurations and conditions beyond those simulated without the need for further modeling. The results of the study suggest that the lateral extent of the well can be estimated using Darcy’s equation and assuming saturated unit-gradient vertical flow regime below the well bottom. An example problem is presented to illustrate the use of the design charts. The scenario described in the example problem was also modeled with SEEP/W, and the results were compared with those obtained from the design charts to demonstrate the validity of design charts for scenarios other than those used for the development of the design charts. The methodology presented in this paper should be thought of as a means to provide a set of bounds that an engineer can use along with their judgment in the design of a system for a specific site.  相似文献   

2.
The key parameters for designing a horizontal source (horizontal trenches, infiltration ponds, infiltration galleries or blankets) for steady state are the rate liquids can be added to the source, the lateral and vertical extents of the zone of impact of the source, and the liquids volume needed to wet the waste within the zone of impact at steady state. This paper presents charts that a designer can use to estimate these key parameters as functions of source dimensions, injection pressure, and municipal solid waste properties (porosity, hydraulic conductivity, and anisotropy) for designing a new or analyzing an existing horizontal source system for liquids addition to landfilled waste. SEEP/W was used to model liquids flow from a horizontal source in a range of conditions practically encountered for such systems. The governing equation (Richard’s equation) and the boundary conditions were analyzed to formulate dimensionless variables by normalizing the design parameters (flow rate, injection pressure, the lateral zone of impact, injection pressure, and the added liquids volume) with the waste properties and source dimensions. The simulation results were transformed to the respective dimensionless forms and presented in design charts to estimate the key design parameters as functions of the source dimensions, waste properties, and injection pressure. The presentation of the modeling results in the dimensionless form facilitates their use beyond the conditions modeled. A solved example is presented to demonstrate the use of the design charts. The approach presented in the paper should be considered as approximate and designers should use their judgement and experience when using these charts for designing a horizontal liquids addition system for a specific site.  相似文献   

3.
Leachate recirculation or liquid injection in municipal solid waste landfills offers economic and environmental benefits. The key objective of this study was to carry out numerical evaluation of key design variables for leachate recirculation system consisting of vertical wells. In order to achieve the objective, numerical modeling was carried out using the finite-element model HYDRUS-2D. The following design parameters were evaluated by simulating liquid pressure head on the liner and the wetted width of the waste under steady-state flow conditions: (1) hydraulic conductivities of the waste and vertical well backfill; (2) liquid injection rate and dosing frequency; (3) well diameter, screen height and screen depth; and (4) hydraulic conductivity of the leachate collection system, slope of the leachate collection system and spacing of the leachate collection pipes. The key findings of this study are as follows. The well diameter, hydraulic conductivity of the well drainage pack, and screen height and screen depth of the well have very little effect on the wetted width for a given liquid flux. The wetted width and the injection pressure for a given liquid flux decrease with the increase in the hydraulic conductivity of the waste. The pressure head on the liner increases with the decrease in the vertical distance between the bottom of the well screen and the top of leachate collection system. The liquid injection flux increases with the decrease in hydraulic conductivity of the leachate collection system. Unlike sand (k approximately 10(-4)m/s), pea gravel (k approximately 0.01 m/s) resulted in less than 0.3m pressure head on the liner for all simulations carried out in this study.  相似文献   

4.
An increasing number of landfills are operated to accelerate waste decomposition through liquids addition (e.g., leachate recirculation) as a wet landfill. Landfill design and regulation often depend on utilizing landfill gas production models that require an estimate of a first-order gas generation rate constant, k. Consequently, several studies have estimated k using collected gas volumes from operating wet landfills. Research was conducted to examine an alternative approach in which k is estimated not from collected landfill gas but from solid waste samples collected over time and analyzed for remaining gas yield. To achieve this goal, waste samples were collected from 1990 through 2007 at two full-scale landfills in Florida that practiced liquids addition. Methane yields were measured from waste samples collected over time, including periods before and after leachate recirculation, and the results were applied to a first-order decay model to estimate rate constants for each of the sites. An initial, intensive processing step was conducted to exclude non-biodegradable components from the methane yield testing procedure. The resulting rate constants for the two landfills examined were 0.47 yr(-1) and 0.21 yr(-1). These results expectedly exceeded the United States Environmental Protection Agency's rate constants for dry and conventional landfills (0.02-0.05 yr(-1)), but they are comparable to wet landfill rate constants derived using landfill gas data (0.1-0.3 yr(-1)).  相似文献   

5.
Dense nonaqueous phase liquids (DNAPLs), in particular chlorinated solvents such as trichloroethene, pose groundwater contamination problems at hazardous waste sites across North America. The mobility of DNAPLs in the subsurface, their low aqueous solubility, and the heterogeneity of typical aquifer systems combine to create conditions that inhibit the rapid remediation of DNAPL sites by traditional pump-and-treat methods. Surfactant-enhanced methods for DNAPL-site remediation accelerate the pace of remediation in granular aquifer systems, e.g., alluvium and outwash. The importance of adequate hydraulic conductivity and aquitard conditions is stressed in the application of surfactant-enhanced aquifer remediation (SEAR).  相似文献   

6.
Because of increased awareness and knowledge about their behavior, dense nonaqueous phase liquids (DNAPLs) are being detected at an increasing frequency at hazardous and solid waste land disposal units. Remedial systems at sites containing DNAPLs need to be designed to address the specific problems presented by DNAPLs. Because of their physical properties, DNAPLs migrate downward and are difficult to remove using conventional recovery methods. Groundwater pumping schemes can be designed to hydraulically contain this vertical migration. The purpose of this article is to present an approach for evaluating the potential to halt the vertical migration of DNAPLs using hydraulic control. Detailed groundwater flow modeling of a group of waste basins indicates that groundwater pumping in low-permeability sands can impose the upward hydraulic gradients required to stop downward DNAPL movement. However, a recovery well system located around the perimeter of the waste basins will not impose the required gradients over a sufficiently large area to effectively contain DNAPLs under the basins because the distribution of vertical gradients that could stop DNAPLs extends only about fifty to sixty feet from the wells. Additional modeling indicates that horizontal recovery wells located directly under the basins can contain the vertical migration of DNAPLs.  相似文献   

7.
A reasonable selection of waste treatment options is indispensable to address challenges in waste management. Introduction of incineration plants for municipal waste in Bangkok had been considered in the past, but each time it was dismissed. In 2013, however, the Bangkok Metropolitan Administration (BMA) decided to introduce an incinerator facility with electricity generation. This study examined how changes in socio-economic factors resulting from economic growth affected the BMA’s decision. First, we conducted interviews of key relevant stakeholders (policymakers and other experts) to determine what kinds of changes in socio-economic factors affected their decision. Then, for interpretation and confirmation of the results from interview, we quantitatively estimated changes in environmental factors (e.g., greenhouse gas emissions), financial factors (e.g., construction and operating costs), and social factors (e.g., employment) in 1990, 2000, and 2012. Based on the result of interview and quantitative analysis, we illustrated the complicated structure of the mechanism of how economic growth affected the selection of waste treatment options in Bangkok, particularly those that led to the selection of the incineration. In addition to local conditions, global economic also affected the waste treatment policy in Bangkok even though waste management is usually thought of as a local issue.  相似文献   

8.
Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.  相似文献   

9.
Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m3/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.  相似文献   

10.
The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past decade. Because simulating moisture balance and flow is more critical in such landfills than in dry landfills, researchers have developed methods to address this problem using the hydrologic evaluation of landfill performance (HELP) model. This paper discusses three methods of applying the HELP model to simulate the percolation of liquids added to landfill waste: the leachate recirculation feature (LRF), the subsurface inflow (SSI) feature, and additional rainfall to mimic liquids addition. The LRF is simple to use but may not be able to bring the landfill to bioreactor conditions. The SSI feature provides a convenient user interface for modeling liquids addition to each layer. The additional rainfall feature provides flexibility to the model, allowing users to estimate the leachate generation rate and the leachate head on bottom liner associated with daily variation in the liquids addition rate. Additionally, this paper discusses several issues that may affect the HELP model, such as the time of model simulation, layers of liquids addition, and the limitations of the HELP model itself. Based on the simulation results, it is suggested that the HELP model should be run over an extended period of time after the cessation of liquids addition in order to capture the peak leachate generation rate and the head on the liner (HOL). From the perspectives of leachate generation and the HOL, there are few differences between single-layer injection and multiple-layer injection. This paper also discusses the limitations of using the HELP model for designing and permitting bioreactor landfills.  相似文献   

11.
This work presents the current waste management system at the pulp and paper mill complex of Stora Enso Oyj Veitsiluoto Mills at Kemi, Northern Finland. This paper covers examples of case studies carried out at the mill and describes how the wastes and by-products are utilized as a neutralizing agent for acidic wastewaters (i.e., green liquor dregs from the causticizing process), as a hardener in filling mine cavities (i.e., ash from the fluidized bed boiler), as a landscaping agent (i.e., ash as well as the fibre clay from chemical wastewater treatment plant), as a hydraulic barrier material for landfills (i.e., fibre clay), and as a soil enrichment agent (i.e., calcium carbonate from the precipitated calcium carbonate plant). In addition, the wood waste from the wood-handling plant, sawmill, packaging pallet plant and from the groundwood mill, as well as the biosludge from the biological wastewater treatment plant, are all incinerated in the fluidized bed boiler for energy production. Due to effective utilization of the solid wastes generated at the mills, the annual amount of waste to be disposed of in the landfill has decreased between 1994 and 2004 from 42,990 to 6083 tonn (expressed as wet weight). The paper also gives an overview of the relevant European Union legislation on the forest industry and on waste management, as well as of the pulping process and of the generation of major solid wastes in the pulp and paper mills.  相似文献   

12.
This paper described the findings and data resulting from the German National Dioxin Measurement Programme at 11 plants with 15 incineration units. The programme's main focus was to provide answers to the question of the causes of dioxins and furans formation in the plant and to look for ways to reduce dioxin and furan emissions, including waste management measures and technical measures taken inside the plants. The investigations confirmed the finding that a major proportion of the dioxin and furan emissions is due to de novo synthesis. Two areas have to be mentioned here, the cooling zone behind the combustion chamber and the dust removal system.Significant differences in dioxin and furan concentration levels were ascertained between variations of operating parameters, e.g. much air, little air, extremely unfavourable operating conditions (i.e. start-up and shut-down without auxiliary burners) and the normal operating conditions specific to a plant. To comply the limit value of 0.1 ng I-TE m−3 it is necessary that conventional thermal treatment plants take additional measures to remove dioxins and furans from the flue gas. The measurements were carried out from 1985 to 1990. In addition, samples of fractions of household waste were analysed for their dioxins and furans.  相似文献   

13.
In this study, anaerobic co-digestion of the tannery waste water (TWW) and tannery solid waste (TSW) with four TWW to TSW mixing ratios (100:0, 75:25, 50:50 and 25:75) was carried out using semi-continuous two-phase anaerobic sequencing batch reactor system under mesophilic temperature (38?±?2 °C). During the experimental study, effluents resulted from previously optimized acidogenic reactors were used to feed subsequent methanogenic reactors and then operated at hydraulic retention time (HRT) of 20, 15 and 10 days and equivalent organic loading rate. The findings revealed that methanogenic reactor of 50:50 (TWW:TSW) treating the effluent from previously optimized acidogenic step exhibits best process performances in terms of daily biogas (415 ml/day), methane production (251 ml/day), methane content (60.5%) and COD removal efficiency (75%) when operated at HRT of 20 days. Process stability of methanogenic step also evaluated and the obtained results showed suitable pH (6.8), no VFA accumulation, i.e., VFA/Alkalinity (0.305), alkalinity (3210 mgCaCO3/l) and ammonia (246 mg/l with in optimum operating range). In general, improved process stability as well as performance was achieved during anaerobic co-digestion of TWW with TSW compared to mono-digestion of TWW.  相似文献   

14.
The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35°C), thermophilic (55°C) and temperature phased (65+55°C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m(3)d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m(3)d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m(3)d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m(3)/kgVS(fed) at 35, 55, and 65+55°C, respectively. The extreme thermophilic reactor working at 65°C showed a high hydrolytic capability and a specific yield of 0.33 g COD (soluble) per gVS(fed). The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.  相似文献   

15.
Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas.  相似文献   

16.
Conventional landfill cover systems for municipal solid waste include low-permeability compacted clay barriers to minimize infiltration into the landfilled waste. Such layers are vulnerable in climates where arid to semi-arid conditions prevail, whereby the clay cover tends to desiccate and crack, resulting in drastically higher infiltration, i.e., lower cover efficiency. To date, this phenomenon, which has been reported in field observations, has not been adequately assessed. In this paper, the performance of a cover system solely relying on a clay barrier was simulated using a numerical finite element formulation to capture changes in the clay layer and the corresponding modified hydraulic characteristics. The cover system was guided by USEPA Subtitle-D minimum requirements and consisted of a clay layer underlying a protective vegetated soil. The intrinsic characteristics of the clay barrier and vegetative soil cover, including their saturated hydraulic conductivities and their soil-water characteristic curves, were varied as warranted to simulate intact or "cracked" conditions as determined through the numerical analyses within the proposed methodology. The results indicate that the levels of percolation through the compromised or cracked cover were up to two times greater than those obtained for intact covers, starting with an intact clay hydraulic conductivity of 10(-5)cm/s.  相似文献   

17.
Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 × 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the landfill.  相似文献   

18.
The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3MWh, or 46kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.  相似文献   

19.
Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH(4)/kg VS(feed) for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36°C, for an OLR of 1.2g VS/Lday. Increasing the OLR to 1.5g VS/Lday led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55°C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.  相似文献   

20.
A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m3 of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6 × 10?8 to 3.6 × 10?6 m3 s?1 per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5 × 10?6 to 4.2 × 10?4 m s?1. The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p < 0.025) decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号