首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
ABSTRACT: Samples from 107 piñon pines (Pinns edulis) at four sites were used to develop a proxy record of annual (June to June) precipitation spanning the 1226 to 2001 AD interval for the Uinta Basin Watershed of northeastern Utah. The reconstruction reveals significant precipitation variability at interannual to decadal scales. Single‐year dry events before the instrumental period tended to be more severe than those after 1900. In general, decadal scale dry events were longer and more severe prior to 1900. In particular, dry events in the late 13th, 16th, and 18th Centuries surpass the magnitude and duration of droughts seen in the Uinta Basin after 1900. The last four decades of the 20th Century also represent one of the wettest periods in the reconstruction. The proxy record indicates that the instrumental record (approximately 1900 to the Present) underestimates the potential frequency and severity of severe, sustained droughts in this area, while over representing the prominence of wet episodes. In the longer record, the empirical probability of any decadal scale drought exceeding the duration of the 1954 through 1964 drought is 94 percent, while the probability for any wet event exceeding the duration of the 1965 through 1999 wet spell is only 1 percent. Hence, estimates of future water availability in the Uinta Basin and forecasts for exports to the Colorado River, based on the 1961 to 1990 and 1971 to 2000 “normal” periods, may be overly optimistic.  相似文献   

2.
We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree‐ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree‐ring chronologies where high snowpack limits growth, which better represent the contribution of cool‐season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high‐intensity, long‐duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s‐1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm‐season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late‐19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands.  相似文献   

3.
ABSTRACT: Water resource planning is based primarily on 20th century instrumental records of climate and streamflow. These records are limited in length to approximately 100 years, in the best cases, and can reflect only a portion of the range of natural variability. The instrumental record neither can be used to gage the unusualness of 20th Century extreme low flow events, nor does it allow the detection of low‐frequency variability that may underlie short‐term variations in flow. In this study, tree rings are used to reconstruct mean annual streamflow for Middle Boulder Creek in the Colorado Front Range, a semi‐arid region of rapid growth and development. The reconstruction is based on a stepwise regression equation that accounts for 70 percent of the variance in the instrumental record, and extends from 1703–1987. The reconstruction suggests that the instrumental record of streamflow for Middle Boulder Creek is not representative of flow in past centuries and that several low flow events in the 19th century were more persistent than any in the 20th century. The 1840s to early 1850s period of low flow is a particularly notable event and may have coincided with a period of low flow in the Upper Colorado River Basin.  相似文献   

4.
The impact of drought on water resources in arid and semiarid regions can be buffered by water supplies from different source regions. Simultaneous drought in all major source regions — or perfect drought — poses the most serious challenge to water management. We examine perfect droughts relevant to Southern California (SoCal) water resources with instrumental records and tree‐ring reconstructions for the Sacramento and Colorado Rivers, and SoCal. Perfect droughts have occurred five times since 1906, lasting two to three years, except for the most recent event, 2012–2015. This number and duration of perfect droughts is not unusual in the context of the past six centuries. The modern period stands out for the relatively even distribution of perfect droughts and lacks the clusters of perfect drought documented in prior centuries. In comparison, perfect droughts of the 12th Century were both longer (up to nine years) and more widespread. Perfect droughts of the 20th and 21st Centuries have occurred under different oceanic/atmospheric patterns, zonal and meridional flow, and ENSO or non‐ENSO conditions. Multidecadal coherence across the three regions exists, but it has varied over the past six centuries, resulting in irregular intervals of perfect drought. Although the causes of perfect droughts are not clear, given the long‐term natural variability along with projected changes in climate, it is reasonable to expect more frequent and longer perfect droughts in the future.  相似文献   

5.
ABSTRACT: A network of 32 drought sensitive tree‐ring chronologies is used to reconstruct mean water year flow on the Columbia River at The Dalles, Oregon, since 1750. The reconstruction explains 30 percent of the variability in mean water year (October to September) flow, with a large portion of unexplained variance caused by underestimates of the most severe low flow events. Residual statistics from the tree‐ring reconstruction, as well as an identically specified instrumental reconstruction, exhibit positive trends over time. This finding suggests that the relationship between drought and streamflow has changed over time, supporting results from hydrologic models, which suggest that changes in land cover over the 20th Century have had measurable impacts on runoff production. Low pass filtering the flow record suggests that persistent low flows during the 1840s were probably the most severe of the past 250 years, but that flows during the 1930s were nearly as extreme. The period from 1950 to 1987 is anomalous in the context of this record for having no notable multiyear drought events. A comparison of the flow reconstruction to paleorecords of the Pacific Decadal Oscillation (PDO) and El Nino/Southern Oscillation (ENSO) support a strong 20th Century link between large scale circulation and streamflow, but suggests that this link is very weak prior to 1900.  相似文献   

6.
Gray, Stephen T., Jeffrey J. Lukas, and Connie A. Woodhouse, 2011. Millennial‐Length Records of Streamflow From Three Major Upper Colorado River Tributaries. Journal of the American Water Resources Association (JAWRA) 47(4):702‐712. DOI: 10.1111/j.1752‐1688.2011.00535.x Abstract: Drought, climate change, and shifting consumptive use are prompting a widespread reassessment of water availability in the Upper Colorado River basin. Here, we present millennial‐length records of water year (October‐September) streamflow for key Upper Colorado tributaries: the White, Yampa, and Little Snake Rivers. Based on tree rings, these records represent the first paleohydrological reconstructions from these subbasins to overlap with a series of Medieval droughts (∼ad 800 to 1300). The reconstructions show marked interannual variability imbedded in nonstationary behavior over decadal to multidecadal time scales. These reconstructions suggest that, even in a millennial context, gaged flows from a handful of years (e.g., 1977 and 2002) were extremely dry. However, droughts of much greater duration and magnitude than any in the instrumental record were regular features prior to 1900. Likewise these reconstructions point to the unusual wetness of the gage period, and the potential for recent observations to paint an overly optimistic picture of regional water supplies. The future of the Upper Colorado River will be determined by a combination of inherent hydroclimatic variability and a broad range of human‐induced changes. It is then essential that regional water managers, water users, and policy makers alike consider a broader range of hydroclimatic scenarios than is offered by the gage record alone.  相似文献   

7.
ABSTRACT: Information regarding long term hydrological variability is critical for the effective management of surface water resources. In the Canadian Prairie region, growing dependence on major river systems for irrigation and other consumptive uses has resulted in an increasing vulnerability to hydrological drought and growing interprovincial tension. This study presents the first dendrochronological records of streamflow for Canadian Prairie rivers. We present 1,113‐year, 522‐year, and 325‐year reconstructions of total water year (October to September) streamflow for the North Saskatchewan, South Saskatchewan, and Saskatchewan Rivers, respectively. The reconstructions indicate relatively high flows during the 20th Century and provide evidence of past prolonged droughts. Low flows during the 1840s correspond with aridity that extended over much of the western United States. Similarly, an exceptional period of prolonged low flow conditions, approximately 900 A.D. to 1300 A.D., is coincident with evidence of sustained drought across central and western North America. The 16th Century megadrought of the western United States and Mexico, however, does not appear to have had a major impact on the Canadian rivers. The dendrohydrological records illustrate the risks involved if future water policy and infrastructure development in the Canadian Prairies are based solely on records of streamflow variability over the historical record.  相似文献   

8.
Abstract: This article evaluates drought scenarios of the Upper Colorado River basin (UCRB) considering multiple drought variables for the past 500 years and positions the current drought in terms of the magnitude and frequency. Drought characteristics were developed considering water‐year data of UCRB’s streamflow, and basin‐wide averages of the Palmer Hydrological Drought Index (PHDI) and the Palmer Z Index. Streamflow and drought indices were reconstructed for the last 500 years using a principal component regression model based on tree‐ring data. The reconstructed streamflow showed higher variability as compared with reconstructed PHDI and reconstructed Palmer Z Index. The magnitude and severity of all droughts were obtained for the last 500 years for historical and reconstructed drought variables and ranked accordingly. The frequency of the current drought was obtained by considering two different drought frequency statistical approaches and three different methods of determining the beginning and end of the drought period (annual, 5‐year moving, and ten year moving average). It was concluded that the current drought is the worst in the observed record period (1923‐2004), but 6th to 14th largest in terms of magnitude and 1st to 12th considering severity in the past 500 years. Similarly, the current drought has a return period ranging from 37 to 103 years based on how the drought period was determined. It was concluded that if the 10‐year moving average is used for defining the drought period, the current drought appears less severe in terms of magnitude and severity in the last 500 years compared with the results using 1‐ and 5‐year averages.  相似文献   

9.
ABSTRACT: High springtime river flows came earlier by one to two weeks in large parts of northern New England during the 20th Century. In this study it was hypothesized that late spring/early summer recessional flows and late summer/early fall low flows could also be occurring earlier. This could result in a longer period of low flow recession and a decrease in the magnitude of low flows. To test this hypothesis, variations over time in the magnitude and timing of low flows were analyzed. To help understand the relation between low flows and climatic variables in New England, low flows were correlated with air temperatures and precipitation. Analysis of data from 23 rural, unregulated rivers across New England indicated little evidence of consistent changes in the timing or magnitude of late summer/early fall low flows during the 20th Century. The interannual variability in the timing and magnitude of the low flows in northern New England was explained much more by the interannual variability in precipitation than by the interannual variability of air temperatures. The highest correlation between the magnitude of the low flows and air temperatures was with May through November temperatures (r =?0.37, p= 0.0017), while the highest correlation with precipitation was with July through August precipitation (r = 0.67, p > 0.0001).  相似文献   

10.
Tingstad, Abbie H. and Glen M. MacDonald, 2010. Long-Term Relationships Between Ocean Variability and Water Resources in Northeastern Utah. Journal of the American Water Resources Association (JAWRA) 46(5):987-1002. DOI: 10.1111/j.1752-1688.2010.00471.x Abstract: The Uinta Mountains in the northwestern Colorado River Basin are an important source of water for Utah and the western United States. This article examines 20th Century hydrology in the Uinta Mountains region in the context of the previous four to eight centuries as well as possible relationships with Pacific and Atlantic Ocean variability using new tree-ring based reconstructions for streamflow and snowpack. The 20th Century appears to have been unusually wet compared with previous centuries. Relationships between hydrology in the region and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) are largely insignificant in instrumental datasets but may have been stronger, although inconsistent, over the longer time spans represented by the paleoclimate records. Impacts of individual modes of sea surface temperature variability may sometimes be enhanced by periods when climate forcing by ENSO, PDO, and/or AMO coincide. Such episodes are associated with deviations from mean hydrology as high as +14% and as low as −18%. The 20th Century could be a misleading benchmark to base water resource estimates upon and flexible water management strategies are necessary to take into account the large range of natural variability observed in the longer-term hydroclimatology as well as the challenges to predictability due to the apparently complex and inconsistent influence of ocean-driven variability.  相似文献   

11.
ABSTRACT: The maximum concentration of a regulated substance that is allowed in a wastewater effluent usually is determined from the amount of dilution provided by the receiving water. Dilution flow is estimated from historical data by application of statistical criteria that define low flow conditions for regulatory purposes. Such use of historical data implies that the past is a good indicator of future conditions, at least for the duration of a discharge permit. Short records, however, introduce great uncertainty in the estimation of low flows because they are unlikely to capture events with recurrence frequencies of multiple years (e.g., ENSO events or droughts). We conducted an analysis of daily flows at several gages with long records in the South Platte River basin of Colorado. Low flows were calculated for successive time blocks of data (3‐, 5‐, 10‐, and 20‐years), and these were compared with low flows calculated for the entire period of record (> 70 years). In unregulated streams, time blocks of three or five years produce estimates of low flows that are highly variable and consistently greater than estimates derived from a longer period of record. Estimates of low flow from 10‐year blocks, although more stable, differ from the long term estimates by as much as a factor of two because of climate variation. In addition, the hydrographs of most streams in Colorado have been influenced by dams, diversions, or water transfers. These alterations to the natural flow regime shorten the record that is useful for analysis, but also tend to increase the calculated low flows. The presence of an upward trend in low flows caused by water use represents an unanticipated risk because it fails to incorporate societal response to severe drought conditions. Thus, climate variability poses a significant risk for water quality both directly, because it may not be represented adequately in the short periods of the hydrologic record that are typically used in permits, and indirectly, through its potential to cause altered use of water during time of scarcity.  相似文献   

12.
Abstract: Tree rings offer a means to extend observational records of streamflow by hundreds of years, but dendrohydrological techniques are not regularly applied to small tributary and headwaters gages. Here we explore the potential for extending three such gage records on small streams in the Wind River drainage of central Wyoming, United States. Using core samples taken from Douglas fir (Pseudotsuga menziesii), piñon pine (Pinus edulis), and limber pine (Pinus flexilis) at 38 sites, we were able to reconstruct streamflows for the headwaters of the Wind River back to 1672 AD or earlier. The streamflow reconstructions for Bull Lake Creek above Bull Lake; the Little Popo Agie River near Lander, Wyoming; and Wind River near Dubois, Wyoming explained between 40% and 64% of the observed variance, and these extended records performed well in a variety of statistical verification tests. The full reconstructions show pronounced inter‐annual variability in streamflow, and these proxy records also point to the prevalence of severe, sustained droughts in this region. These reconstructions indicate that the 20th Century was relatively wet compared to previous centuries, and actual gage records may capture only a limited subset of potential natural variability in this area. Further analyses reveal how tree‐ring based reconstructions for small tributary and headwaters gages can be strongly influenced by the length and quality of calibration records, but this work also demonstrates how the use of a spatially extensive network of tree‐ring sites can improve the quality of these types of reconstructions.  相似文献   

13.
Abstract: Repeated severe droughts over the last decade in the South Atlantic have raised concern that streamflow may be systematically decreasing, possibly due to climate variability. We examined the monthly and annual trends of streamflow, precipitation, and temperature in the South Atlantic for the time periods: 1934‐2005, 1934‐1969, and 1970‐2005. Streamflow and climate (temperature and precipitation) trends transitioned ca. 1970. From 1934 to 1969, streamflow and precipitation increased in southern regions and decreased in northern regions; temperature decreased throughout the South Atlantic. From 1970 to 2005, streamflow decreased, precipitation decreased, and temperature increased throughout the South Atlantic. It is unclear whether these will be continuing trends or simply part of a long‐term climatic oscillation. Whether these streamflow trends have been driven by climatic or anthropogenic changes, water resources management faces challenging prospects to adapt to decadal‐scale persistently wet and dry hydrologic conditions.  相似文献   

14.
Securing sustainable livelihood conditions and reducing the risk of outmigration in savanna ecosystems hosted in the tropical semiarid regions is of fundamental importance for the future of humanity in general. Although precipitation in tropical drylands, or savannas, is generally more significant than one might expect, these regions are subject to considerable rainfall variability which causes frequent periods of water deficiency. This paper addresses the twin problems of “drought and desertification” from a water perspective, focusing on the soil moisture (green water) and plant water uptake deficiencies. It makes a clear distinction between long‐term climate change, meteorological drought, and agricultural droughts and dry spells caused by rainfall variability and land degradation. It then formulates recommendations to better cope with and to build resilience to droughts and dry spells. Coping with desertification requires a new conceptual framework based on green‐blue water resources to identify hydrological opportunities in a sea of constraints. This paper proposes an integrated land/water approach to desertification where ecosystem management supports agricultural development to build social‐ecological resilience to droughts and dry spells. This approach is based on the premise that to combat desertification, focus should shift from reducing trends of land degradation in agricultural systems to water resource management in savannas and to landscape‐wide ecosystem management.  相似文献   

15.
In recent decades, significant progress has been made toward reconstructing the past climate record based on environmental proxies, such as tree rings and ice core records. However, limited examples of research that utilizes such data for water resources decision-making and policy exist. Here, we use the reconstructed record of Palmer Drought Severity Index (PDSI), dating back to 1138AD to understand the nature of drought occurrence (severity and duration) in the state of Maine. This work is motivated by the need to augment the scientific basis to support the water resources management and the emerging water allocation framework in Maine (Maine Department of Environmental Protection, Chapter 587). Through a joint analysis of the reconstructed PDSI and historical streamflow record for twelve streams in the state of Maine, we find that: (a) the uncertainties around the current definition of natural drought in the Chapter 587 (based on the 20th century instrumental record) can be better understood within the context of the nature and severity of past droughts in this region, and (b) a drought index provides limited information regarding at-site hydrologic variations. To fill this knowledge gap, a drought index-based risk assessment methodology for streams across the state is developed. Based on these results, the opportunities for learning and challenges facing water policies in a changing hydroclimate are discussed.  相似文献   

16.
ABSTRACT: The Palmer Drought Severity Index, which is intended to be of reasonable comparable local significance both in space and time, has been extensively used as a measure of drought for both agricultural and water resource management. This study examines the spatial comparability of Palmer's (1965) definition of severe and extreme drought. Index values have been computed for 1035 sites with at least 60 years of record that are scattered across the contiguous United States, and quantile values corresponding to a specified index value were calculated for given months and then mapped. The analyses show that severe or extreme droughts, as defined by Palmer (1965), are not spatially comparable in terms of identifying rare events. The wide variation across the country in the frequency of occurrence of Palmer's (1965) extreme droughts reflects the differences in the variability of precipitation, as well as the average amount of precipitation. It is recommended first, that a drought index be developed which considers both variability and averages; and second, that water resource managers and planners define a drought in terms of an index value that corresponds to the expected quantile (return period) of the event.  相似文献   

17.
ABSTRACT: Water resources are the lifeblood of the Near East region. Careful planning and management of water resources in dry land regions requires information on the likelihood of extreme events, especially prolonged drought. It is essential to understand the variability of climate on time scales of decades to centuries to assign reasonable probabilities to such events. Tree-ring analysis is one way to increase our knowledge of the climate variability beyond the short period covered by the instrumental data. In this paper, we reconstruct October-May precipitation from a Juniperus phoenicia tree-ring chronology in southern Jordan to gain a long-term (A.D. 1600–1995) perspective on runs of dry years and on time series fluctuations in precipitation averaged over several years. The reconstruction equation derived by regression of log-transformed precipitation on tree-ring indices explains 44 percent of the variance of observed precipitation. The longest reconstructed drought, as defined by consecutive years below a threshold of 217.4 mm, was four years, compared with three years for the 1946–95 instrumental data. A Monte Carlo analysis designed to account for uncertainty in the reconstruction indicates a lower than 50 percent chance that the region has experienced drought longer than five years in the past 400 years.  相似文献   

18.
Abstract: The authors develop a model framework that includes a set of hydrologic modules as a water resources management and planning tool for the upper Santa Cruz River near the Mexican border, Southern Arizona. The modules consist of: (1) stochastic generation of hourly precipitation scenarios that maintain the characteristics and variability of a 45‐year hourly precipitation record from a nearby rain gauge; (2) conceptual transformation of generated precipitation into daily streamflow using varied infiltration rates and estimates of the basin antecedent moisture conditions; and (3) surface‐water to ground‐water interaction for four downstream microbasins that accounts for alluvial ground‐water recharge, and ET and pumping losses. To maintain the large inter‐annual variability of streamflow as prevails in Southern Arizona, the model framework is constructed to produce three types of seasonal winter and summer categories of streamflow (i.e., wet, medium, or dry). Long‐term (i.e., 100 years) realizations (ensembles) are generated by the above described model framework that reflects two different regimes of inter annual variability. The first regime is that of the historic streamflow gauge record. The second regime is that of the tree ring reconstructed precipitation, which was derived for the study location. Generated flow ensembles for these two regimes are used to evaluate the risk that the regional four ground‐water microbasins decline below a preset storage threshold under different operational water utilization scenarios.  相似文献   

19.
Abstract: It is critical to understand the ability of water management to prepare for and respond to the likely increasing duration, frequency, and intensity of droughts brought about by climate variability and change. This article evaluates this ability, or adaptive capacity, within large urban community water systems (CWSs) in Arizona and Georgia. It analyzes interview data on the bridges and barriers to adapting water management approaches in relation to extreme droughts over the past decade. This study not only finds levers for building adaptive capacity that are unique to each state but also identifies several unifying themes that cut across both cases. The interviews also show that a particular bridge or barrier, such as state regulation, is not universally beneficial or detrimental for building adaptive capacity within each state. Such knowledge is useful for improving water and drought management and for understanding how CWSs might prepare for future climate variability and change by removing the barriers and bolstering the bridges in efforts to build adaptive capacity.  相似文献   

20.
The overall influence of urbanization on how flows of different frequency might change over time, while important in hydrologic design, remains imprecisely known. In this study, we investigate the effects of urbanization on flow duration curves (FDCs) and flow variability through a case study of eight watersheds that underwent different amounts of growth, in the Puget Sound region in Western Washington State, United States. We computed annual FDCs from flow records spanning 1960‐2010 and, after accounting for the effects of precipitation, we conducted statistical trend analyses on flow metrics to quantify how key FDC percentiles changed with time in response to urbanization. In the urban watersheds, the entire FDC tended to increase in magnitude of flow, especially the 95th‐99th percentile of the daily mean flow series, which increased by an average of 43%. Stream flashiness in urban watersheds was found to increase by an average of 70%. The increases in FDC magnitude and flashiness in urbanizing watersheds are most likely a result of increasing watershed imperviousness and altered hydrologic routing. Rural watersheds were found to have decreasing FDC magnitude over the same time period, which is possibly due to anthropogenic extractions of groundwater, and increasing stream flashiness, which is likely a result of reductions in base flow and increasing precipitation intensity and variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号