首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus export coefficients (kg/ha/yr) from selected land covers, also called phosphorus yields, tend to get smaller as contributing areas get larger because some of the phosphorus mobilized on local fields gets trapped during transport to regional watershed outlets. Phosphorus traps include floodplains, wetlands, and lakes, which can then become impaired by eutrophication. The Sunrise River watershed in east central Minnesota, United States, has numerous lakes impaired by excess phosphorus. The Sunrise is tributary to the St. Croix River, whose much larger watershed is terminated by Lake St. Croix, also impaired by excess phosphorus. To support management of these impairments at both local and regional scales, a Soil and Water Assessment Tool (SWAT) model of the Sunrise watershed was constructed to estimate load reductions due to selected best management practices (BMPs) and to determine how phosphorus export coefficients scaled with contributing area. In this study, agricultural BMPs, including vegetated filter strips, grassed waterways, and reduction of soil‐phosphorus concentrations reduced phosphorus loads by 4‐20%, with similar percentage reductions at field and watershed spatial scales. Phosphorus export coefficients from cropland in rotation with corn, soybeans, and alfalfa decreased as a negative power function of contributing area, from an average of 2.12 kg/ha/yr at the upland field scale (~0.6 km2) to 0.63 kg/ha/yr at the major river basin scale (20,000 km2). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

2.
This study analyzed changes in hydrology between two recent decades (1980s and 2010s) with the Soil and Water Assessment Tool (SWAT) in three representative watersheds in South Dakota: Bad River, Skunk Creek, and Upper Big Sioux River watersheds. Two SWAT models were created over two discrete time periods (1981‐1990 and 2005‐2014) for each watershed. National Land Cover Datasets 1992 and 2011 were, respectively, ingested into 1981‐1990 and 2005‐2014 models, along with corresponding weather data, to enable comparison of annual and seasonal runoff, soil water content, evapotranspiration (ET), water yield, and percolation between these two decades. Simulation results based on the calibrated models showed that surface runoff, soil water content, water yield, and percolation increased in all three watersheds. Elevated ET was also apparent, except in Skunk Creek watershed. Differences in annual water balance components appeared to follow changes in land use more closely than variation in precipitation amounts, although seasonal variation in precipitation was reflected in seasonal surface runoff. Subbasin‐scale spatial analyses revealed noticeable increases in water balance components mostly in downstream parts of Bad River and Skunk Creek watersheds, and the western part of Upper Big Sioux River watershed. Results presented in this study provide some insight into recent changes in hydrological processes in South Dakota watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

3.
This paper examines the performance of a semi‐distributed hydrology model (i.e., Soil and Water Assessment Tool [SWAT]) using Sequential Uncertainty FItting (SUFI‐2), generalized likelihood uncertainty estimation (GLUE), parameter solution (ParaSol), and particle swarm optimization (PSO). We applied SWAT to the Waccamaw watershed, a shallow aquifer dominated Coastal Plain watershed in the Southeastern United States (U.S.). The model was calibrated (2003‐2005) and validated (2006‐2007) at two U.S. Geological Survey gaging stations, using significant parameters related to surface hydrology, hydrogeology, hydraulics, and physical properties. SWAT performed best during intervals with wet and normal antecedent conditions with varying sensitivity to effluent channel shape and characteristics. In addition, the calibration of all algorithms depended mostly on Manning's n‐value for the tributary channels as the surface friction resistance factor to generate runoff. SUFI‐2 and PSO simulated the same relative probability distribution tails to those observed at an upstream outlet, while all methods (except ParaSol) exhibited longer tails at a downstream outlet. The ParaSol model exhibited large skewness suggesting a global search algorithm was less capable of characterizing parameter uncertainty. Our findings provide insights regarding parameter sensitivity and uncertainty as well as modeling diagnostic analysis that can improve hydrologic theory and prediction in complex watersheds. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

4.
Quantification of the effects of management programs on water quality is critical to agencies responsible for water resource protection. This research documents reductions in stream water phosphorus (P) loads resulting from agricultural best management practices (BMPs) implemented as part of an effort to control eutrophication of Cannonsville Reservoir, a drinking water supply for New York City. Dairy farms in the upstate New York reservoir basin were the target of BMPs designed to reduce P losses. A paired watershed study was established on one of these farms in 1993 to evaluate changes in P loading attributable to implementation of BMPs that included manure management, rotational grazing, and improved infrastructure. Intensive stream water monitoring provided data to calculate P loads from the 160-ha farm watershed for all runoff events during a two-year pre-treatment period and a four-year post-treatment period. Statistical control for inter-annual climatic variability was provided by matched P loads from a nearby 86-ha forested watershed, and by several event flow variables measured at the farm. A sophisticated multivariate analysis of covariance (ANCOVA) provided estimates of both seasonal and overall load reductions. Statistical power and the minimum detectable treatment effect (MDTE) were also calculated. The results demonstrated overall event load reductions of 43% for total dissolved phosphorus (TDP) and 29% for particulate phosphorus (PP). Changes in farm management practices and physical infrastructure clearly produced decreases in event P losses measurable at the small watershed scale.  相似文献   

5.
Buchanan, Brian, Zachary M. Easton, Rebecca Schneider, and M. Todd Walter, 2011. Incorporating Variable Source Area Hydrology Into a Spatially Distributed Direct Runoff Model. Journal of the American Water Resources Association (JAWRA) 48(1): 43‐60. DOI: 10.1111/j.1752‐1688.2011.00594.x Abstract: Few hydrologic models simulate both variable source area (VSA) hydrology, and runoff‐routing at high enough spatial resolutions to capture fine‐scale hydrologic pathways connecting VSA to the stream network. This paper describes a geographic information system‐based operational model that simulates the spatio‐temporal dynamics of VSA runoff generation and distributed runoff‐routing, including through complex artificial drainage networks. The model combines the Natural Resource Conservation Service’s Curve Number (CN) equation for estimating storm runoff with the topographic index concept for predicting the locations of VSA and a runoff‐routing algorithm into a new spatially distributed direct hydrograph (SDDH) model (SDDH‐VSA). Using a small agricultural watershed in central New York, SDDH‐VSA results were compared to those from a SDDH model using the traditional land use assumptions for the CN (SDDH‐CN). The SDDH‐VSA model generally agreed better with observed discharge than the SDDH‐CN model (average, Nash‐Sutcliffe efficiency of 0.69 vs. 0.58, respectively) and resulted in more realistic spatial patterns of runoff‐generating areas. The SDDH approach did not correctly capture the timing of runoff from small storms in dry periods. Despite this type of limitation, SDDH‐VSA extends the applicability of the SDDH technique to VSA conditions, providing a basis for new tools to help identify critical management areas and assess water quality risks due to landscape alterations.  相似文献   

6.
The Soil and Water Assessment Tool (SWAT) model (Arnold et al., 1998) is a popular watershed management tool. Currently, the SWAT model, actively supported by the U.S. Department of Agriculture and Texas A&M, operates only on Microsoft® Windows, which hinders modelers that use other operating systems (OS). This technical note introduces the Comprehensive R Archive Network (CRAN) distributed “SWATmodel” package which allows SWAT 2005 and 2012 to be widely distributed and run as a linear model‐like function on multiple OS and processor platforms. This allows researchers anywhere in the world using virtually any OS to run SWAT. In addition to simplifying the use of SWAT across computational platforms, the SWATmodel package allows SWAT modelers to utilize the analytical capabilities, statistical libraries, modeling tools, and programming flexibility inherent to R. The software allows watershed modelers to develop a simple hydrological watershed model conceptualization of the SWAT model and to obtain a first approximation of the minimum expected results a more complicated model should deliver. As a proof of concept, we test the SWAT model by initializing and calibrating 314 U.S. Geological Survey stream gages in the Chesapeake Bay watershed and present the results.  相似文献   

7.
ABSTRACT: Significant land cover changes have occurred in the watersheds that contribute runoff to the upper San Pedro River in Sonora, Mexico, and southeast Arizona. These changes, observed using a series of remotely sensed images taken in the 1970s, 1980s, and 1990s, have been implicated in the alteration of the basin hydrologic response. The Cannonsville subwatershed, located in the Catskill/Delaware watershed complex that delivers water to New York City, provides a contrast in land cover change. In this region, the Cannonsville watershed condition has improved over a comparable time period. A landscape assessment tool using a geographic information system (GIS) has been developed that automates the parameterization of the Soil and Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS) hydrologic models. The Automated Geospatial Watershed Assessment (AGWA) tool was used to prepare parameter input files for the Upper San Pedro Basin, a subwatershed within the San Pedro undergoing significant changes, and the Cannonsville watershed using historical land cover data. Runoff and sediment yield were simulated using these models. In the Cannonsville watershed, land cover change had a beneficial impact on modeled watershed response due to the transition from agriculture to forest land cover. Simulation results for the San Pedro indicate that increasing urban and agricultural areas and the simultaneous invasion of woody plants and decline of grasslands resulted in increased annual and event runoff volumes, flashier flood response, and decreased water quality due to sediment loading. These results demonstrate the usefulness of integrating remote sensing and distributed hydrologic models through the use of GIS for assessing watershed condition and the relative impacts of land cover transitions on hydrologic response.  相似文献   

8.
Land use change can significantly affect the provision of ecosystem services and the effects could be exacerbated by projected climate change. We quantify ecosystem services of bioenergy‐based land use change and estimate the potential changes of ecosystem services due to climate change projections. We considered 17 bioenergy‐based scenarios with Miscanthus, switchgrass, and corn stover as candidate bioenergy feedstock. Soil and Water Assessment Tool simulations of biomass/grain yield, hydrology, and water quality were used to quantify ecosystem services freshwater provision (FWPI), food (FPI) and fuel provision, erosion regulation (ERI), and flood regulation (FRI). Nine climate projections from Coupled Model Intercomparison Project phase‐3 were used to quantify the potential climate change variability. Overall, ecosystem services of heavily row cropped Wildcat Creek watershed were lower than St. Joseph River watershed which had more forested and perennial pasture lands. The provision of ecosystem services for both study watersheds were improved with bioenergy production scenarios. Miscanthus in marginal lands of Wildcat Creek (9% of total area) increased FWPI by 27% and ERI by 14% and decreased FPI by 12% from the baseline. For St. Joseph watershed, Miscanthus in marginal lands (18% of total area) improved FWPI by 87% and ERI by 23% while decreasing FPI by 46%. The relative impacts of land use change were considerably larger than climate change impacts in this paper. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

9.
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

10.
ABSTRACT: A curve number based model, Soil and Water Assessment Tool (SWAT), and a physically based model, Soil Moisture Distribution and Routing (SMDR), were applied in a headwater watershed in Pennsylvania to identify runoff generation areas, as runoff areas have been shown to be critical for phosphorus management. SWAT performed better than SMDR in simulating daily streamflows over the four‐year simulation period (Nash‐Sutcliffe coefficient: SWAT, 0.62; SMDR, 0.33). Both models varied streamflow simulations seasonally as precipitation and watershed conditions varied. However, levels of agreement between simulated and observed flows were not consistent over seasons. SMDR, a variable source area based model, needs further improvement in model formulations to simulate large peak flows as observed. SWAT simulations matched the majority of observed peak flow events. SMDR overpredicted annual flow volumes, while SWAT underpredicted the same. Neither model routes runoff over the landscape to water bodies, which is critical to surface transport of phosphorus. SMDR representation of the watershed as grids may allow targeted management of phosphorus sources. SWAT representation of fields as hydrologic response units (HRUs) does not allow such targeted management.  相似文献   

11.
Several biofuel cropping scenarios were evaluated with an improved version of Soil and Water Assessment Tool (SWAT) as part of the CenUSA Bioenergy consortium for the Boone River Watershed (BRW), which drains about 2,370 km2 in north central Iowa. The adoption of corn stover removal, switchgrass, and/or Miscanthus biofuel cropping systems was simulated to assess the impact of cellulosic biofuel production on pollutant losses. The stover removal results indicate removal of 20 or 50% of corn stover in the BRW would have negligible effects on streamflow and relatively minor or negligible effects on sediment and nutrient losses, even on higher sloped cropland. Complete cropland conversion into switchgrass or Miscanthus, resulted in reductions of streamflow, sediment, nitrate, and other pollutants ranging between 23‐99%. The predicted nitrate reductions due to Miscanthus adoption were over two times greater compared to switchgrass, with the largest impacts occurring for tile‐drained cropland. Targeting of switchgrass or Miscanthus on cropland ≥2% slope or ≥7% slope revealed a disproportionate amount of sediment and sediment‐bound nutrient reductions could be obtained by protecting these relatively small areas of higher sloped cropland. Overall, the results indicate that all biofuel cropping systems could be effectively implemented in the BRW, with the most robust approach being corn stover removal adopted on tile‐drained cropland in combination with a perennial biofuel crop on higher sloped landscapes. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

12.
In some watersheds, streambanks are a source of two major pollutants, phosphorus (P) and sediment. P originating from both uplands and streambanks can be transported and stored indefinitely on floodplains, streambanks, and in closed depressions near the stream. The objectives of this study were to (1) test the modified streambank erosion and instream P routines for the Soil and Water Assessment Tool (SWAT) model in the Barren Fork Creek watershed in northeast Oklahoma, (2) predict P in the watershed with and without streambank‐derived P, and (3) determine the significance of streambank erosion P relative to overland P sources. Measured streambank and channel parameters were incorporated into a flow‐calibrated SWAT model and used to estimate streambank erosion and P for the Barren Fork Creek using modified streambank erosion and instream P routines. The predicted reach‐weighted streambank erosion was 40 kg/m vs. the measured 42 kg/m. Streambank erosion contributed 47% of the total P to the Barren Fork Creek and improved P predictions compared to observed data, especially during the high‐flow events. Of the total P entering the stream system, approximately 65% was removed via the watershed outlet and 35% was stored in the floodplain and stream system. This study successfully applied the SWAT model's modified streambank erosion and instream P routines and demonstrated that streambank‐derived P can improve P modeling at the watershed scale. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

13.
ABSTRACT: The use of continuous time, distributed parameter hydrologic models like SWAT (Soil and Water Assessment Tool) has opened several opportunities to improve watershed modeling accuracy. However, it has also placed a heavy burden on users with respect to the amount of work involved in parameterizing the watershed in general and in adequately representing the spatial variability of the watershed in particular. Recent developments in Geographical Information Systems (GIS) have alleviated some of the difficulties associated with managing spatial data. However, the user must still choose among various parameterization approaches that are available within the model. This paper describes the important parameterization issues involved when modeling watershed hydrology for runoff prediction using SWAT with emphasis on how to improve model performance without resorting to tedious and arbitrary parameter by parameter calibration. Synthetic and actual watersheds in Indiana and Mississippi were used to illustrate the sensitivity of runoff prediction to spatial variability, watershed decomposition, and spatial and temporal adjustment of curve numbers and return flow contribution. SWAT was also used to predict stream runoff from actual watersheds in Indiana that have extensive subsurface drainage. The results of this study provide useful information for improving SWAT performance in terms of stream runoff prediction in a manner that is particularly useful for modeling ungaged watersheds wherein observed data for calibration is not available.  相似文献   

14.
Cho, Jaepil, Richard R. Lowrance, David D. Bosch, Timothy C. Strickland, Younggu Her, and George Vellidis, 2010. Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):586-602. DOI: 10.1111/j.1752-1688.2010.00436.x Abstract: The Soil and Water Assessment Tool (SWAT) does not fully simulate riparian buffers, but has a simple filter function that is responsive to filter strip width (FILTERW). The objectives of this study were to (1) evaluate SWAT hydrology and water quality response to changes in watershed subdivision levels and different FILTERW configurations and (2) provide guidance for selecting appropriate watershed subdivision for model runs that include the riparian buffer feature through the FILTERW parameter. Watershed subdivision level is controlled by the critical source area (CSA) which defines the minimum drainage area required to form the origin of a stream. SWAT was calibrated on a 15.7 km2 subdrainage within the Little River Experimental Watershed, Georgia. The calibrated parameter set was applied to 32 watershed configurations consisting of four FILTERW representations for each of eight CSA levels. Streamflow predictions were stable regardless of watershed subdivision and FILTERW configuration. Predicted sediment and nutrient loads from upland areas decreased as CSA increased when spatial variations of riparian buffers are considered. Sediment and nutrient yield at the watershed outlet was responsive to different combinations of CSA and FILTERW depending on selected in-stream processes. CSA ranges which provide stable sediment and nutrient yields at the watershed outlet was suggested for avoiding significant modifications in selected parameter set.  相似文献   

15.
The ability of a watershed model to mimic specified watershed processes is assessed through the calibration and validation process. The Soil and Water Assessment Tool (SWAT) watershed model was implemented in the Beaver Reservoir Watershed of Northwest Arkansas. The objectives were to: (1) provide detailed information on calibrating and applying a multisite and multivariable SWAT model; (2) conduct sensitivity analysis; and (3) perform calibration and validation at three different sites for flow, sediment, total phosphorus (TP), and nitrate‐nitrogen (NO3‐N) plus nitrite‐nitrogen (NO2‐N). Relative sensitivity analysis was conducted to identify parameters that most influenced predicted flow, sediment, and nutrient model outputs. A multi objective function was defined that consisted of optimizing three statistics: percent relative error (RE), Nash‐Sutcliffe Coefficient (RNS2), and coefficient of determination (R2). This function was used to successfully calibrate and validate a SWAT model of Beaver Reservoir Watershed at multi‐sites while considering multivariables. Calibration and validation of the model is a key factor in reducing uncertainty and increasing user confidence in its predictive abilities, which makes the application of the model effective. Information on calibration and validation of multisite, multivariable SWAT models has been provided to assist watershed modelers in developing their models to achieve watershed management goals.  相似文献   

16.
The Upper Mississippi River Basin and Ohio‐Tennessee River Basin comprise the majority of the United States Corn Belt region, resulting in degraded Mississippi River and Gulf of Mexico water quality. To address the water quality implications of increased biofuel production, biofuel scenarios were tested with a Soil and Water Assessment Tool (SWAT) model revision featuring improved biofuel crop representation. Scenarios included corn stover removal and the inclusion of two perennial bioenergy crops, switchgrass and Miscanthus, grown on marginal lands (slopes >2% and erosion rates >2 t/ha) and nonmarginal lands. The SWAT model estimates show water quality is not very sensitive to stover removal. The perennial bioenergy crops reduce simulated sediment, nitrogen (N), and phosphorus (P) yields by up to 60%. Simulated sediment and P reductions in marginal lands were generally twice that occurring in the nonmarginal lands. The highest unit area reductions of N occurred in the less sloping tile‐drained lands. Productivity showed corn grain yield was independent from stover removal, while yields of the two perennial bioenergy crops were similar in the marginal and nonmarginal lands. The results suggest planning for biofuel production in the Corn Belt could include the removal of stover in productive corn areas, and the planting of perennial bioenergy crops in marginal land and in low‐sloped tile‐drained areas characterized by high N pollution. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

17.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   

18.
ABSTRACT: The performance of two popular watershed scale simulation models — HSPF and SWAT — were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine‐year period (1987 through 1995) and verified using an independent 15‐year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better than HSPF for the verification period, with the primary advantage being better simulation of low flows. A noticeable difference in the models' hydrologic simulation relates to the estimation of potential evapotranspiration (PET). Comparatively low PET values provided as input to HSPF from the BASINS 3.0 database may be a factor in HSPF's overestimation of low flows. Another factor affecting baseflow simulation is the presence of tile drains in the watershed. HSPF parameters can be adjusted to indirectly account for the faster subsurface flow associated with tile drains, but there is no specific tile drainage component in HSPF as there is in SWAT. Continued comparative studies such as this, under a variety of hydrologic conditions and watershed scales, provide needed guidance to potential users in model selection and application.  相似文献   

19.
This study is to evaluate the future potential impact of climate change on the water quality of Chungju Lake using the Water Quality Analysis Simulation Program (WASP). The lake has a storage capacity of 2.75 Gm3, maximum water surface of 65.7 km2, and forest‐dominant watershed of 6,642 km2. The impact on the lake from the watershed was evaluated by the Soil and Water Assessment Tool (SWAT). The WASP and SWAT were calibrated and validated using the monthly water temperatures from 1998 to 2003, lake water quality data (dissolved oxygen, total nitrogen [T‐N], total phosphorus [T‐P], and chlorophyll‐a [chl‐a]) and daily dam inflow, and monthly stream water quality (sediment, T‐N, and T‐P) data. For the future climate change scenario, the MIROC3.2 HiRes A1B was downscaled for 2020s, 2050s, and 2080s using the Change Factor statistical method. The 2080s temperature and precipitation showed an increase of +4.8°C and +34.4%, respectively, based on a 2000 baseline. For the 2080s watershed T‐N and T‐P loads of up to +87.3 and +19.6%, the 2080s lake T‐N and T‐P concentrations were projected to be 4.00 and 0.030 mg/l from 2.60 and 0.016 mg/l in 2000, respectively. The 2080s chl‐a concentration in the epilimnion and the maximum were 13.97 and 52.45 μg/l compared to 8.64 and 33.48 μg/l in 2000, respectively. The results show that the Chungju Lake will change from its mesotrophic state of 2000 to a eutrophic state by T‐P in the 2020s and by chl‐a in the 2080s. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

20.
This study tests the applicability of the curve number (CN) method within the Soil and Water Assessment Tool (SWAT) to estimate surface runoff at the watershed scale in tropical regions. To do this, surface runoff simulated using the CN method was compared with observed runoff in numerous rainfall‐runoff events in three small tropical watersheds located in the Upper Blue Nile basin, Ethiopia. The CN method generally performed well in simulating surface runoff in the studied watersheds (Nash‐Sutcliff efficiency [NSE] > 0.7; percent bias [PBIAS] < 32%). Moreover, there was no difference in the performance of the CN method in simulating surface runoff under low and high antecedent rainfall (PBIAS for both antecedent conditions: ~30%; modified NSE: ~0.4). It was also found that the method accurately estimated surface runoff at high rainfall intensity (e.g., PBIAS < 15%); however, at low rainfall intensity, the CN method repeatedly underestimated surface runoff (e.g., PBIAS > 60%). This was possibly due to low infiltrability and valley bottom saturated areas typical of many tropical soils, indicating that there is scope for further improvements in the parameterization/representation of tropical soils in the CN method for runoff estimation, to capture low rainfall‐intensity events. In this study the retention parameter was linked to the soil moisture content, which seems to be an appropriate approach to account for antecedent wetness conditions in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号