首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrologic disturbance reduces biological integrity in urban streams   总被引:1,自引:0,他引:1  
The impact of urbanization on stream ecosystems is linked by land cover changes to the alteration of the natural hydrology and subsequent physical disruption of stream biota and habitat. Seasonal floods are part of the natural disturbance regime of many streams, but urbanization increases their frequency and magnitude. This study evaluated the impact of hydrologic disturbance on fish and aquatic macroinvertebrates in 81 (56 urban/25 reference) Ohio streams. Hydrologic variables included annual and monthly 24-h rainfall maxima and computed annual peak discharge, with computation supported by GIS-based drainage area delineation and land cover characterization. Ohio biological criteria for fish and macroinvertebrates measured during the late spring and summer were negatively impacted by annual peak discharge in urban streams as compared to reference streams. Results support the application of stormwater best management practices as part of stream restoration efforts to mitigate urbanization impacts to fish and macroinvertebrates.  相似文献   

2.
Ground level ozone (O3) concentration was monitored during the period of December 2004 to November 2005 in an urban area in Greater Cairo (Haram, Giza). During the winter and summer seasons, nitrogen dioxide (NO2) and nitric oxide(NO) concentrations and meteorological parameters were also measured. The mean values of O3 were 43.89, 65.30, 91.30 and 58.10 ppb in daytime and 29.69, 47.80, 64.00 and 42.70 ppb in whole day (daily) during the winter, spring, summer and autumn seasons, respectively. The diurnal cycles of O3 concentrations during the four seasons revealed a uni-modal peak in the mid-day time, with highest O3 levels in summer due to the local photochemical production. The diurnal variations in NO and NO2 concentrations during the winter and summer showed two daily peaks linked to traffic density. The highest levels of NOx were found in winter. Nearly, 75%, 100%, 34.78% and 52.63% of the mean daytime concentrations of O3 during spring,summer, autumn and the whole year, respectively, exceeded the Egyptian and European Union air quality standards (60 ppb) for daytime (8-h) O3 concentration. About, 41.14% and 10.39% of the daytime hours concentrations and 14.93% and 3.77% of the daily hour concentrations in summer and the whole year, respectively, exceeded the Egyptian standard (100 ppb) for maximum hourly O3 concentration, and photochemical smog is formed in the study area (Haram) during a periods represented by the same percentages. This was based on the fact that photochemical smog usually occurs when O3 concentration exceeds 100 ppb. The concentrations of O3 precursors (NO and NO2) in weekends were lower than those found in weekdays, whereas the O3 levels during the weekends were high compared with weekdays. This finding phenomenon is known as the "weekend effect". Significant positive correlation coefficients were found between O3 and temperature in both seasons and between O3 and relative humidity in summer season, indicating that high temperature and high relative humidity besides the intense solar radiation (in summer) are responsible for the formation of high O3 concentrations.  相似文献   

3.
To further understand the mechanism of bioavailable total P (BAP) and bioavailable dissolved P (BDP) transport by overland and subsurface flow, we exposed a runoff plot 4.5 m long × 1.5 m wide × 0.6 m deep to simulated and natural rainfall in order to study the effects of rainfall type, rainfall intensity, and vegetation cover on BAP and BDP transport. The results showed that vegetation cover could alleviate the discharge of overland flow and sediment transport and enhance subsurface flow. BAP transport significantly increased with elevated rainfall intensity. Vegetation cover reduced the BAP transport by overland flow and increased it by subsurface flow. BDP transport showed no significant relationship with vegetation cover and rainfall type. The bioavailable particulate P (BPP) transport by overland flow contributed to no less than 90% by weight of total BAP, and the BPP transport by subsurface flow contributed to no less than 60% by weight of total BAP. Short-time heavy rainfall caused more BAP transport and accelerated non-point source pollution.  相似文献   

4.
Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar radiation dosimetry within multiple coral reef areas of South Florida was assessed using remote sensed, modeled, and measured values during a minor bleaching event during August 2005. Coral reefs in the Dry Tortugas and Upper Keys had similar diffuse downwelling attenuation coefficients (Kd, m(-1)), whereas Kd values were significantly greater in the Middle and Lower Keys. Mean 1% attenuation depths varied by reef region for ultraviolet B (UVB; 9.7 to 20 m), ultraviolet A (UVA; 22 to 40 m) and visible (27 to 43 m) solar radiation. Solar irradiances determined from remote sensed data were significantly correlated with measured values, but were generally overestimated at the depth of corals. Solar irradiances modeled using an atmospheric radiative transfer model parameterized with site specific approximations of cloud cover showed close agreement with measured values. Estimated daily doses (W h/m(2)) of UVB (0.01-19), UVA (2-360) and visible (29-1,653) solar radiation varied with coral depth (2 to 24 m) and meteorological conditions. These results indicate large variation in solar radiation dosimetry within coral reefs that may be estimated with reasonable accuracy using regional Kd measurements and radiative transfer modeling.  相似文献   

5.
The air temperature distributions in August (summer) and December (winter) were measured in an approximately 15 × 15-km urban area in Hyogo Prefecture, Japan, in order to study the spatial distribution of the air temperature and to propose effective measures against the heat island phenomenon. The air temperature was measured mainly by using thermometer shelters installed in an elementary school and a junior high school. The characteristic air temperature distribution depended on the season. The air temperature was higher inland than in the coastal region in August but was higher in the coastal region in December. The air temperature index indicated that the area where higher air temperatures would most likely appear was 5 to 10 km inland from the coast in August and around the coast in December. The seasonal air temperature distribution was presumably due to the strength of solar radiation and anthropogenic exhaust heat.  相似文献   

6.
Biological and physical processes operate collaboratively through spatial or temporal scales to form ecological patterns, which are considered as a key element for understanding the natural liens within an ecosystem. Given the importance of scaling in ecological inference, this study elucidates how physical and biological variables under or within scales interact with each other. Density of Sicyopterus japonicus and environmental variables are examined and quantified at 70 stream sections distributed among 14 reaches in the Datuan stream catchment of northern Taiwan during the fall and winter of 2007, as well as the spring and summer of 2008. Hierarchical linear regression analysis indicates that S. japonicus density and habitat features are related on two levels, i.e., sections within reaches and reaches within streams throughout the year. Moreover, parameter uncertainty is represented by the confidence interval, which is calculated by the variance-covariance matrix of hierarchical linear model (HLM) parameters. According to HLM results, environmental variables at the section level (water depth and current velocity) and the reach level (stream width, water temperature, stream slope, soil erosion index) influence S. japonicus density. Although S. japonicus density varies significantly among reaches and sections within reaches, cross-level interaction may not always influence the distribution, processes and activities of S. japonicus throughout the year. The HLMs of S. japonicus density associated with stream features describe thoroughly multiple processes and the activities of S. japonicus across scales and within scales during different seasons. The annual HLM results represent the overall biological and physical patterns of the Datuan stream annually, explaining why they do not reflect seasonal associations or explain S. japonicus-related activities and environmental features of the stream.  相似文献   

7.
Surface ozone concentrations in Xi'an, China were monitored from March 23, 2008 to January 12, 2009 using the Model ML/EC9810 ozone analyzer. The daily average O(3) ranged from <1 ppb to 64.2 ppbv with an annual average of 16.0 ppbv. The seasonal average of O(3) in summer (32.5 ppbv) was more than 10 times higher than that in winter (3.0 ppbv). A significant positive correlation was found between ozone concentration and ambient temperature, indicating that the intensity of solar radiation was one of the several major factors controlling surface ozone production. Using the NOAA HYSPLIT 4 trajectory model, the three longest O(3) pollution episodes were found to be associated with the high biogenic volatile organic carbon (BVOC) emissions from the vegetation of Qinling Mountains. No significant weekday and weekend difference in O(3) levels was detected due to the non-significant change in NO(x) emissions. O(3) depletion by NO emission directly emitted from vehicles, low oxygenated VOC concentrations, and low-level solar radiation caused by high aerosol loading all contributed to the low levels of O(3) found in Xi'an compared to other cities and rural areas.  相似文献   

8.
This paper addresses differences in instream-flow needs (IFNs) of Pacific salmonids and lamprey across species, life stages, and stream sizes on the Pacific coast, with additional consideration of salmonid-IFN data from northern Europe. The Pacific Southwest data set was for various life stages of coho salmon and steelhead trout in small coastal streams of central and southern California. These data showed that younger life stages required less flow than adults. The Pacific Northwest data set was for spawning adults of all five salmon species and steelhead trout in Washington or northern California. These data showed that spawning salmonids required more flow, relative to mean annual flow, in smaller streams. Although these IFNs varied by species, all were much higher than IFNs to protect wetted perimeters (rearing habitat) and water quality in these streams. The high-flow guild included chinook, pink, and chum salmon, whereas the low-flow guild included coho and sockeye salmon. Steelhead were unique in showing relatively high spawning IFNs for creeks and small rivers, unlike large rivers, such that IFNs were more affected by stream size for this species than salmon.  相似文献   

9.
Mountainous areas in the northern Pakistan are blessed by numerous rivers that have great potential in water resources and hydropower production. Many of these rivers are unexploited for their water resource potential. If the potential of these rivers are explored, hydropower production and water supplies in these areas may be improved. The Indus is the main river originating from mountainous area of the Himalayas of Baltistan, Pakistan in which most of the smaller streams drain. In this paper, the hydrology of the mountainous areas in northern Pakistan is studied to estimate flow pattern, long-term trend in river flows, characteristics of the watersheds, and variability in flow and water resource due to impact of climate change. Eight watersheds including Gilgit, Hunza, Shigar, Shyok, Astore, Jhelum, Swat, and Chitral, Pakistan have been studied from 1960 to 2005 to monitor hydrological changes in relation to variability in precipitation, temperature and mean monthly flows, trend of snow melt runoff, analysis of daily hydrographs, water yield and runoff relationship, and flow duration curves. Precipitation from ten meteorological stations in mountainous area of northern Pakistan showed variability in the winter and summer rains and did not indicate a uniform distribution of rains. Review of mean monthly temperature of ten stations suggested that the Upper Indus Basin can be categorized into three hydrological regimes, i.e., high-altitude catchments with large glacierized parts, middle-altitude catchments south of Karakoram, and foothill catchments. Analysis of daily runoff data (1960-2005) of eight watersheds indicated nearly a uniform pattern with much of the runoff in summer (June-August). Impact of climate change on long-term recorded annual runoff of eight watersheds showed fair water flows at the Hunza and Jhelum Rivers while rest of the rivers indicated increased trends in runoff volumes. The study of the water yield availability indicated a minimum trend in Shyok River at Yogo and a maximum trend in Swat River at Kalam. Long-term recorded data used to estimate flow duration curves have shown a uniform trend and are important for hydropower generation for Pakistan which is seriously facing power crisis in last 5 years.  相似文献   

10.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

11.
Particle-bound PAHs were measured at three sites in southeastern Spain (an urban background location, a suburban-industrial site in the vicinity of two cement plants and a rural area) in order to investigate the influence of the type of location on PAH concentrations. A clear influence of cement production on particulate PAH levels could not be established since for the urban background and suburban-industrial sites the average concentrations of total PAHs in the PM2.5 fraction were very similar (1.085 and 1.151 ng m(-3), respectively), with benzo[b+k]fluoranthene and chrysene as the predominant compounds. Diagnostic ratios, used to identify PAH emission sources, pointed to traffic as the main source of particulate PAH at both locations. As expected, PAH levels at the rural site were significantly lower (0.408 ng m(-3) in the PM10 fraction) due to increasing distance from the emission sources. PAH seasonal variations at the urban background and suburban-industrial sites were the same as reported in many previous studies. Average winter to summer ratios for total PAHs were 4.4 and 4.9 for the urban background and industrial sites, in that order. This seasonal cycle could be partially explained by the higher temperature and solar radiation during summer enhancing PAH evaporation from the particulate phase and PAH photochemical degradation, respectively. The study of PAH distribution between the fine and coarse fraction at the urban site revealed that on average around 80% of total PAHs were associated with fine particles.  相似文献   

12.
Long-term phenol, cresols and BTEX monitoring in urban air   总被引:1,自引:0,他引:1  
This paper reports the results of a long-term monitoring of benzene, toluene, ethylbenzene, xylenes (BTEX), phenol and cresols in the air of Padua during a wide period of the year 2007 using two radial passive samplers (Radiello system) equipped with BTEX- and phenol-specific cartridges. Two sites were monitored, one in the industrial area and one close to the town centre. Relevant pollution episodes have been observed during both the winter and summer periods. Benzene, together with toluene, ethylbenzene and xylenes showed their maximum concentrations during the winter season, but the secondary pollutant phenol was higher than benzene for a large period of the year when the meteorological conditions blocked the pollutants in the lower layers of the atmosphere and solar radiation increased the benzene photo-oxidation process.  相似文献   

13.
Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.  相似文献   

14.
The combination of intensive agricultural activities and the close connectivity between land and stream emphasise the potential risk of pesticide exposure in Danish streams. Benthic macroinvertebrates are applied in the assessment of stream ecological status, and some sensitive species have been shown to respond strongly to brief pulses of pesticide contamination. In this study we investigate the impact of agriculturally derived pesticides on stream macroinvertebrate communities in Denmark. As a measure of toxic pressure we apply the Runoff Potential. We investigated a total of 212 streams. These were grouped into distinct classes according to the magnitude of pesticide contamination in the period from 2003-2006. A total of 24 different macroinvertebrate indices were applied to detect effects of pesticide runoff (e.g. the SPEAR-index and the number of EPT taxa). We found high predicted pesticide runoff in 39% of the streams, but we found no significant effect of predicted pesticide exposure on stream macroinvertebrate indices. We, additionally, examined the influence of a series of environmental parameters ranging from site scale to catchment scale on the macroinvertebrate community. Relative proportions of gravel, sand and silt in bed sediments explained most of the variation in macroinvertebrate indices as well as the upstream riparian habitat quality. We suggest that the Runoff Potential model overestimate pesticide runoff contamination in Danish streams due the presence of buffer strips enforced by Danish legislation. When pesticide runoff contamination is low to moderate, poor physical properties (indirectly related to agricultural activity) are the main impediment for the ecological quality of Danish streams.  相似文献   

15.
The seasonal variations of concentrations of PAHs in the soil and the air were measured in urban and rural region of Dalian, China in 2007. In soil, mean concentrations of all PAHs in summer were larger than those in winter, whereas the concentrations of heavier weight PAHs in winter were larger than those in summer. Winter/summer concentration ratios for individual PAHs (R(W/S)) increased with the increase of molecular weight of PAHs in soil, indicating that PAHs with high molecular weight were more easily deposited to soil in winter than summer. In air, mean concentrations of all PAHs in winter were larger than those in summer. In comparison with the R(W/S) in soil, all the values of R(W/S) in air were larger than one indicating that the entire individual PAH concentrations in winter were larger than those in summer. The average concentration composition for each PAH compound in soil and air samples was determined and the seasonal change of PAH profile was very small. It was suggested that PAHs in soils and air had the same or similar sources both in winter and summer. The approach to the soil-air equilibrium was assessed by calculating fugacity quotients between soil and air using the soil and air concentrations. The calculated soil-air fugacity quotients indicated that soil acted as a secondary source to the atmosphere for all lighter weight PAHs (two-three rings) and it will continue to be a sink for heavier weight PAHs (five-six rings) in the Dalian environment, both in winter and summer. Medium weight PAHs (four-five rings) were close to the soil-air equilibrium and the tendency shifted between soil and air when season or function region changed. The fugacity quotients of PAHs in summer (mean temperature 298 K) were larger than those in winter (mean temperature 273 K), indicating a higher tendency in summer than winter for PAHs to move from soil to air. The variation of ambient conditions such as temperature, rainfall, etc. can influence the movement of PAHs between soil and air. Most of the fugacity quotients of PAHs for the urban sites were larger than that for the rural site both in winter and summer. This phenomenon may be related with that the temperatures in urban sites were higher than those in the rural site because of the urban heat island effect.  相似文献   

16.
新疆河流径流特征分析   总被引:1,自引:0,他引:1  
选择了新疆众多河流中代表性好的7条河流,对径流的特征进行了分析。结果表明,新疆河流径流量主要集中在夏季,占年径流量的50.8%—70.7%,春、秋季径流量差别不大,冬季仅占年径流量的4.7%—10.8%。以7条河流径流深值可看出,北疆径流深值比南疆大,最大的是布尔津河,径流深为507.4mm。从径流量的Cv值看,除头道沟为0.44,极值比4.42较大外,其它河流的Cv值均在0.19—0.23间、极值比在1.85—2.42间。同时,新疆大多数河流径流量90年代后有明显增多的趋势。  相似文献   

17.
Seventeen airborne carbonyls including monocarbonyls and dicarbonyls were determined in urban and sub-urban sites of Xi’an, China in three seasons in 2010. In winter, acetone was the most abundant carbonyl in the urban site due to usage of organic solvents in constructions and laboratories and its slower atmospheric removal mechanisms by photolysis and reaction with hydroxyl radical than those of formaldehyde and acetaldehyde. In the sub-urban site, acetaldehyde was the most abundant carbonyl, followed by formaldehyde and acetone. During summer, however, formaldehyde was the most dominant carbonyl in both sites. The photooxidations of a wide range of volatile organic compounds (VOCs) yielded much more formaldehyde than other carbonyls under high solar radiation and temperature. In the urban site, the average concentrations of dicarbonyls (i.e., glyoxal and methyglyoxal) in spring and summer were higher than that in winter. Transformation of aromatic VOCs emitted from fuel evaporation leads to the formation of 1,2-dicarbonyls. A reverse trend was observed in sub-urban sites, as explained by the relatively low abundances and accumulations of VOC precursors in the rural atmosphere during warm seasons. Moreover, cumulative cancer risk based on measured outdoor carbonyls (formaldehyde and acetaldehyde) in Xi’an Jiaotong University and Heihe was estimated (8.82?×?10?5 and 4.96?×?10?5, respectively). This study provides a clear map on the abundances of carbonyls and their source interpretation in the largest and the most economic city in Northwestern China.  相似文献   

18.
Hydrologic response is an integrated indicator of watershed condition, and significant changes in land cover may affect the overall health and function of a watershed. This paper describes a procedure for evaluating the effects of land cover change and rainfall spatial variability on watershed response. Two hydrologic models were applied on a small semi-arid watershed; one model is event-based with a one-minute time step (KINEROS), and the second is a continuous model with a daily time step (SWAT). The inputs to the models were derived from Geographic Information System (GIS) theme layers of USGS digital elevation models, the State Soil Geographic Database (STATSGO) and the Landsat-based North American Landscape Characterization classification (NALC) in conjunction with available literature and look up tables. Rainfall data from a network of 10 raingauges and historical stream flow data were used to calibrate runoff depth using the continuous hydrologic model from 1966 to 1974. No calibration was carried out for the event-based model, in which six storms from the same period were used in the calculation of runoff depth and peak runoff. The assumption on which much of this study is based is that land cover change and rainfall spatial variability affect the rainfall-runoff relationships on the watershed. To validate this assumption, simulations were carried out wherein the entire watershed was transformed from the 1972 NALC land cover, which consisted of a mixture of desertscrub and grassland, to a single uniform land cover type such as riparian, forest, oak woodland, mesquite woodland, desertscrub, grassland, urban, agriculture, and barren. This study demonstrates the feasibility of using widely available data sets for parameterizing hydrologic simulation models. The simulation results show that both models were able to characterize the runoff response of the watershed due to changes of land cover.  相似文献   

19.
Physical, chemical and biological conditions at five stations on a small southeastern stream were evaluated using the Rapid Bioassessment Protocols (RBP) and the Sediment Quality Triad (SQT) to assess potential biological impacts of a municipal wastewater treatment facility (WWTF) on downstream resources. Physical habitat, benthic macroinvertebrates and fish assemblages were impaired at Stations 1 and 2 (upstream of the WWTF), suggesting that the degraded physical habitat was adversely impacting the fish and benthic populations. The SQT also demonstrated that Stations 1 and 2 were degraded, but the factors responsible for the impaired conditions were attributed to the elevated concentrations of polycylclic aromatic hydrocarbons (PAHs) and metals (Mn, Pb) in the sediments. The source of contaminants to the upper reaches of the stream appears to be storm-water runoff from the city center. Increased discharge and stabilized base flow contributed by the WWTF appeared to benefit the physically-altered stream system. Although the two assessment procedures demonstrated biological impairment at the upstream stations, the environmental factors identified as being responsible for the impairment were different: the RBP provided insight into contributions associated with the physical habitat and the SQT contributed information on contaminants and sediment quality. Both procedures are important in the identification of physical and chemical factors responsible for environmental impairment and together they provide information critical to the development of appropriate management options for mitigation.  相似文献   

20.
Zn, Cd, Cr, Hg, As (total), Cu, Pb, and Ni levels of the deepwater rose shrimp (Parapenaeus longirostris, Lucas 1846), which were collected from the Tekirda? coast of the Marmara Sea, were evaluated. The Marmara Sea is the recipient of discharges from both land-based sources and the Black Sea Bosphorus stream. There are large numbers of anthropogenic activities in the coastal region of the northern Marmara Sea that include urban effluent, discharges from touristic resorts, agricultural runoff, fishing, and transportation. Heavy metal contamination of water resources may cause critical health problems for the people living around these water bodies. In deepwater rose shrimp (P. longirostris), the highest concentration level detected for Zn was 22.4?±?24.4 mg/kg in winter 2012, Cd 0.106?±?0.01 mg/kg in summer 2012, Cr 0.77?±?0.05 mg/kg in winter 2012, Hg 0.18?±?0.04 mg/kg in summer 2011, As 9.93?±?1.4 mg/kg in spring 2012, Cu 25.48?±?0.3 mg/kg in winter 2012, Pb 2.12?±?0.8 mg/kg in spring, and Ni 19.25?±?7.1 mg/kg in spring. The values of heavy metal analysis were compared to both the Turkish Food Codex (TFC) limits and international standards for human consumption. The Pb, As, and Cu levels were found to be higher than the maximum allowable limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号