首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to evaluate the polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) levels in PM(10) and PM(2.5), at one rural and three urban sites in the Cantabria region (northern Spain). From all of these pollutants, benzo(a)pyrene is regulated by the EU air quality directives; its target value (1?ng/m(3)) was not exceeded. The concentration values of the studied organic pollutants at the studied sites are in the range of those obtained at other European sites. A comparison between the rural-urban stations was developed: (a) PAH concentration values were lower in the rural site (except for fluorene). Therefore, the contribution of local sources to the urban levels of PAHs seems relevant. Results from the coefficient of divergence show that the urban PAH levels are influenced by different local emission sources. (b) PCB rural concentration values were higher than those found at urban sites. Because no local sources of PCBs were identified in the rural site, the contribution of more distant emission sources (about 40?km) to the PCB levels is considered to be the most important; the long-range transport of PCBs does not seem to be significant. Additionally, local PAH tracers were identified by a triangular diagram: higher molecular weight PAHs in Reinosa, naphthalene in Santander and anthracene/pyrene in Castro Urdiales. A preliminary PAH source apportionment study in the urban sites was conducted by means of diagnostic ratios. The ratios are similar to those reported in areas affected by traffic emissions; they also suggest an industrial emission source at Reinosa.  相似文献   

2.
From March 2008 to February 2009, PM(10) samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) at eight sampling sites in Great Xiamen Bay, China. Analyses of the seasonal and spatial variations of these compounds revealed the following results. Significantly high levels of PAHs were found in the winter compared to the summer, sometimes exceeding 100 ng m(-3), and the spatial variations were influenced most by the sampling site surroundings. Composition profiles of PAHs of an urban and a rural site were shown to be very similar with a positive correlation coefficient larger than 0.9 at the 0.01 level of significance for the same season. Diagnostic ratios, together with principal component and multiple linear regression analysis, showed that more PAHs were from grass/wood/coal combustion in winter than in other seasons. The ratios of benzo[a]pyrene to benzo[e]pyrene (BaP-BeP) in winter and fall were 0.6-1.7 times higher than those in spring and summer, suggesting the importance of local emissions of PAHs. The BaP-BeP ratios in Kinmen were generally lower than those in Xiamen, indicating that the aging degree of PAHs was higher in Kinmen than in Xiamen. The external input of PAHs from upwind urban and industrial areas was one of the key factors causing high levels of PAHs in PM(10) in Great Xiamen Bay in winter.  相似文献   

3.
Size fractionated particulate matter (PM) was collected in summer and winter from Beijing, China for the characterization of an expanded list of PAHs and evaluation of air pollution metrics. Summertime ΣPAHs on PM was 14.6 ± 29(PM 1.5), 0.88 ± 0.49(PM 1.5-7.2) and 0.29 ± 0.076(PM 7.2) ng m(-3) air while wintertime concentrations were 493 ± 206(PM 1.5), 26.7 ± 14(PM 1.5-7.2) and 5.3 ± 2.5(PM 7.2) ng m(-3) air. Greater than 90% of the carcinogenic PAHs were concentrated on PM(1.5). Dibenzopyrene isomers made up a significant portion (~30%) of the total carcinogenic PAH load during the winter. To our knowledge, this is the first report of dibenzopyrenes in the Beijing atmosphere and among the few studies that report these highly potent PAHs in ambient particulate matter. Lifetime risk calculations indicated that 1 out of 10,000 to over 6 out of 100 Beijing residents may have an increased risk of lung cancer due to PAH concentration. Over half of the lifetime risk was attributed to Σdibenzopyrenes. The World Health Organization and Chinese daily PM(10) standard was exceeded on each day of the study, however, PAH limits were only exceeded during the winter. The outcomes of the air pollution metrics were highly dependent on the individual PAHs measured and seasonal variation.  相似文献   

4.
The seasonal variations of concentrations of PAHs in the soil and the air were measured in urban and rural region of Dalian, China in 2007. In soil, mean concentrations of all PAHs in summer were larger than those in winter, whereas the concentrations of heavier weight PAHs in winter were larger than those in summer. Winter/summer concentration ratios for individual PAHs (R(W/S)) increased with the increase of molecular weight of PAHs in soil, indicating that PAHs with high molecular weight were more easily deposited to soil in winter than summer. In air, mean concentrations of all PAHs in winter were larger than those in summer. In comparison with the R(W/S) in soil, all the values of R(W/S) in air were larger than one indicating that the entire individual PAH concentrations in winter were larger than those in summer. The average concentration composition for each PAH compound in soil and air samples was determined and the seasonal change of PAH profile was very small. It was suggested that PAHs in soils and air had the same or similar sources both in winter and summer. The approach to the soil-air equilibrium was assessed by calculating fugacity quotients between soil and air using the soil and air concentrations. The calculated soil-air fugacity quotients indicated that soil acted as a secondary source to the atmosphere for all lighter weight PAHs (two-three rings) and it will continue to be a sink for heavier weight PAHs (five-six rings) in the Dalian environment, both in winter and summer. Medium weight PAHs (four-five rings) were close to the soil-air equilibrium and the tendency shifted between soil and air when season or function region changed. The fugacity quotients of PAHs in summer (mean temperature 298 K) were larger than those in winter (mean temperature 273 K), indicating a higher tendency in summer than winter for PAHs to move from soil to air. The variation of ambient conditions such as temperature, rainfall, etc. can influence the movement of PAHs between soil and air. Most of the fugacity quotients of PAHs for the urban sites were larger than that for the rural site both in winter and summer. This phenomenon may be related with that the temperatures in urban sites were higher than those in the rural site because of the urban heat island effect.  相似文献   

5.
东北地区城市大气颗粒物中多环芳烃的污染特征   总被引:10,自引:5,他引:5  
2008年4月至2009年1月期间,在东北三省(辽宁、吉林、黑龙江)设立30个观测点位,研究了东北城市大气颗粒物中PAHs的浓度水平、分布及来源.结果表明,不同季节14种PAHs总浓度的变化范围是16.3 ~712.1 ng/m3,呈冬季高、夏季低的季节变化特征;PAHs组成以4~5环化合物为主,3~4环化合物受温度的影响较大,表现出较强的季节波动;8个城市中抚顺和吉林PAHs污染最重,城市不同功能区中以工业区污染较重;燃煤和机动车尾气是区域PAHs的主要来源.  相似文献   

6.
This paper reports the monitoring results of eleven polycyclic aromatic hydrocarbons (PAHs), four to six-ring, at two urban sites-Central & Western (CW) and Tsuen Wan (TW) in Hong Kong from January to December 2000; and the findings of a study conducted in 2001 of the partitioning of the gaseous and particulate phases of PAHs. The sum of the eleven PAHs under study (sigmaPAHs) was found to range from 6.46 to 38.8 ng m(-3). The annual mean levels at 12.2 ng m(-3) and 15.8 ng m(-3) for CW and TW respectively are comparable to those recorded for the previous two years and are also within the reported ranges for other metropolitan cities in the Asia Pacific region. Amongst the selected eleven PAHs, fluoranthene and pyrene were the two most abundant found in the urban atmosphere of Hong Kong during the study period accounting for approximately 80%, of the total PAHs. The ratios of benzo(a)pyrene to benzo(g,h,i)perylene (BaP/BghiP) and indeno(1,2,3-cd)pyrene to benzo(g,h,i)perylene (IDP/BghiP) indicate that diesel and gasoline vehicular exhausts were the predominant local emission sources of PAHs. Seasonal variations with high winter to summer ratios for each of the individual PAHs (CW: 1.6-16.7 and TW: 0.82-8.2) and for sigmaPAHs (CW: 1.9 and TW: 1.8) and a spatial variation of BaP amongst the air monitoring stations are noted. Results of correlation studies illustrate that local meteorological conditions such as ambient temperature, solar radiation, wind speed and wind direction have significant impact on the concentrations of atmospheric PAHs accounting for the observed seasonal variations. A snapshot comparison of the concentrations of PAHs at four sites including a roadside site, a rural site and the two regular urban sites CW and TW was also performed using the profiles of PAHs recorded on two particulate episode days in March 2000.  相似文献   

7.
Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.  相似文献   

8.
An intensive two month measurement campaign has been performed during a two year study of major component composition of urban PM10 and PM2.5 in Ireland (J. Yin, A. G. Allen, R. M. Harrison, S. G. Jennings, E. Wright, M. Fitzpatrick, T. Healy, E. Barry, D. Ceburnis and D. McCusker, Atmos. Res., 2005, 78(3-4), 149-165). Measurements included size-segregated mass, soluble ions, elemental carbon (EC) distributions, fine and coarse fraction organic carbon (OC) and major gases along with standard meteorological measurements. The study revealed that urban emissions in Ireland had mainly a local character and therefore were confined within a limited area of 20-30 km radius, without significantly affecting regional air quality. Gaseous measurements have shown that urban emissions in Ireland had clear, but fairly limited influence on the regional air quality due to favorable mixing conditions at higher wind speeds, in particular from the western sector. Size-segregated mass and chemical measurements revealed a clear demarcation size between accumulation and coarse modes at about 0.8 microm which was constant at all sites. Carbonaceous compounds at the urban site accounted for up to 90% of the particle mass in a size range of 0.066-0.61 microm. Nss SO4(2-) concentrations in PM2.5 were only slightly higher at the urban site compared to the rural or coastal sites, while NO3- and NH4+ concentrations were similar at the urban and coastal sites, but were a factor of 2 to 3 higher than at the rural site. OC was highly variable between the sites and revealed clear seasonal differences. Natural or biogenic OC component accounted for <10% in winter and up to 30% in summer of the PM2.5 OC at urban sites. A contribution of biogenic OC component to PM2.5 OC mass at rural site was dominant.  相似文献   

9.
采集2012年3月-2013年2月遵义市丁字口(市区点)、凤凰山(背景点)监测点的 PM10样品,并对 PM10中元素污染特征、来源和生态风险进行分析与评价。结果表明,遵义市 PM10质量浓度季节变化为:冬季>春季>秋季>夏季,且市区点高于背景点,冬季超标率均为100%。PM10中 As、Pb、Hg、Mn质量浓度市区点高于背景点,且均为冬季最高。富集因子分析表明,Pb、As、Cd、Hg、Mn、Cu、Zn来自人为污染,生态危害顺序为:Cd>Pb >As>Cu >Zn >Ni >Cr,其中 Cd 的潜在生态危害为极强。  相似文献   

10.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) were analysed in 39 soil samples (0–10 cm upper layer) collected in Belgrade, the capital of Serbia. The sampling sites were randomly selected from urban, urban/recreational and rural areas; the samples were collected in April and December 2003 and July and October 2004. The sum of the 16 PAHs corresponding to the recreational zone (298 μg/kg) was close to the urban zone (375 μg/kg). Mean soil ΣPAH concentration from rural areas was 18 μg/kg dry weight. Comparing to values observed in the urbanized locations around the world, the overall levels of PAHs in this study are low. The PAH ratios obtained pointed to a domination of pyrogenically formed PAHs in the examined soils. The dominant PAHs in soil samples in urban zones were fluoranthene, benz[a]anthracene, phenanthrene and pyrene, mostly emitted from noncatalyst vehicles which are still in use in Serbia. The total carcinogenic potency for each sampling site was calculated. Regardless of the used carcinogenic activity factors, carcinogenic potency of 7 sites were 3–9 times higher than the reference ones indicating the increased carcinogenic burden of soils from these sites.  相似文献   

12.
对2008年05至11月淮南市5个采样点大气可吸入颗粒物(PM10)样品进行分析,总结了研究区内PM10及其中16种PAHs的浓度特征、季节变化规律和来源解析。研究区内16种PAHs浓度总和的范围在15.20~111.58ng.m-3之间,平均值为40.40ng.m-3,中位数为33.34ng.m-3。PAHs总量的季节变化与采样时环境温度显示出较好的负相关性,即秋季>春季>夏季;运用多环芳烃比值综合判断,淮南市大气PM10中PAHs主要以燃煤和机动车尾气混合来源为主,石油源和木材燃烧来源的贡献较小。  相似文献   

13.
This paper presents the analysis of polycyclic aromatic hydrocarbons (PAHs) measured in all four seasons in suspendedparticulate matter (SPM) collected with a high-volume sampler on one measuring site in the northern part of Zagreb. About 30 samples of SPM were analysed for each season, including workdays and weekends and there were no differences amongst them. The concentrations of all PAHs were highest in winter andlowest in summer. The spring PAH concentrations were lower thanthe autumn ones, as the spring had more sunny and warm days. Theprofiles of PAH/BaP at the measurement sites showed that the mainsource of PAHs in spring and summer was traffic while asubstantial amount of autumn and winter PAHs, besides traffic,came from heating.  相似文献   

14.
In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.  相似文献   

15.
The aim of this study was to measure the concentration of some metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Ti) in PM(10) samples collected in one urban and one industrial site and to assess that PM(10) total mass measurement may be not sufficient as air quality index due to its complex composition. Metals were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and differential pulsed anodic stripping voltammetry (DPASV). The measured concentrations were used to calculate the content of metals in the PM(10) total mass, and to estimate the enrichment factors and the correlations between PM(10), metal concentrations and meteorological data for the two sites. The mean PM10 concentration during the sampling period in the urban site exceeded the annual European Union (EU) standard (40 microg/m(3)) and, for some sampling days, the daily EU standard (50 microg/m(3)) was also exceeded. In opposite, both EU standards were never exceeded in the industrial site. The overall metal content was nearly double in the industrial site compared to the urban one, and the mean Ni concentration exceeded the EU annual limit value (10 ng/m(3)). The metals with the highest enrichment factor were Cd, Cu, Ni and Pb for both sites, suggesting a dominant anthropogenic source for these metals. Metal concentrations were very low and typical of rural background during Christmas holidays, when factories were closed. PM(10) total mass measurement is not a sufficient air quality index since the metal content of PM(10) is not related to its total mass, especially in sites with industrial activities. This measurement should be associated with the analysis of toxic metals.  相似文献   

16.
Airborne particulate matter, suspected to induce adverse effects on human health, have been one of the most important concerns regarding recent air pollution issues in Japan. To characterize regional and seasonal variations in emission sources of fine airborne particulate matter (d < 2 microm), monthly samples (n = 36 for each site) were collected at urban (Tokyo), suburban (Maebashi), and mountainous (Akagi) sites in Japan from April 2003 to March 2006. Multielement analysis of chemical species (Na, Al, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sb, and Pb) was performed by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry. The combined source receptor model, which consists of positive matrix factorization and chemical mass balance, determined the contributions of nine emission sources (local and continental soils, road dust, coal and oil combustion, waste incineration, steel industry, brake wear, and diesel exhaust) to the observed elemental concentrations. Large regional differences were identified in the source contributions among the observational sites. Diesel exhaust was identified as the most significant source (70% of identified contributions) at the urban site. Local and continental soils, coal combustion, and diesel exhaust were intricately assigned (20-30% each) to the suburban site. Continental soil was the predominant source (65%) at the mountainous site. Respective significant source contributions dominated the seasonal variations of total elemental concentrations at each site. These results suggest that a better understanding of the regional and seasonal characteristics of impacting emission sources will be important for improving regional environments.  相似文献   

17.
Daytime and nighttime PM(2.5) samples were collected between August 5 and 16, 2009 and between January 24 and February 4, 2010 in an industrial complex site (site A) and an electronic waste recycling site (site B) to determine the seasonal and diurnal variations of 19 individual polycyclic aromatic hydrocarbons (PAHs) with molecular weight 302 (MW302) including four highly carcinogenic dibenzopyrene (DBP) isomers dibenzo[a,l]pyrene (DBalP), dibenzo[a,e]pyrene (DBaeP), dibenzo[a,i]pyrene (DBaiP), and dibenzo[a,h]pyrene (DBahP). This is the first report on DBP isomers in air particles from South China. The total concentration of PAH MW302 isomers ranged from 1.65 to 3.60 ng m(-3) in summer and 3.82 to 9.81 ng m(-3) in winter. The strongest peaks in the chromatograms of the MW302 isomers were naphtha[2,1-a]pyrene (N21aP), dibenzo[j,l]fluoranthene (DBjlF), naphtha[1,2-b]fluoranthene (N12bF), naphtha[1,2-k]fluoranthene (N12kF) and dibenzo[a,e]fluoranthene (DBaeF), constituting 52.0 to 55.4% of the total MW302 isomers. All the MW302 isomers showed notable seasonal variations. Most of the MW302 isomers in site B showed distinctive diurnal variations with higher concentrations occurring in the night. Taking into account both concentration and potency equivalence factors (PEFs), the strongest carcinogen in the analyzed samples was DBaiP, and the ratios of sum carcinogenic potency of four highly carcinogenic DBP isomers to benzo[a]pyrene (BaP) was about 0.94 in winter to 1.89 in summer, indicating the importance of DBP isomers for the risk assessment. Health risk assessment indicated that on average, 1 in 100 000 residents in the two industrial sites may have an increased risk of cancer due to PAH exposure.  相似文献   

18.
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Delhi were evaluated to study particulate PAHs profiles during the different seasons of 2003. Samples of urban suspended particulate matter were collected during January 2003 to December 2003 at three locations (Okhla, Dhaulakuan and Daryaganj), using a high volume sampler provided with glass fiber filters. Samples were analyzed using the gas chromatography technique. The annual average concentrations of total PAHs were found as 1,049.3 ng/m(3) at Okhla, 1,344.37 ng/m(3) at Daryaganj, and 1,117.14 ng/m(3) at Dhaulakuan. The seasonal average concentrations were found to be maximum in winter and minimum during the monsoon season. Principal Component Analysis (PCA) of the data was also carried out and the results indicate that diesel and gasoline driven vehicles are the principal sources of PAHs at all the three sites under investigation. Other sources might come from stationary combustion sources such as cooking fuel combustion and industrial emission.  相似文献   

19.
Total suspended particulate (TSP) samples were collected weekly over a period of one year at four European sites during 1995/6. Two sites were in London-a Central London site (CL, St Paul's Cathedral) and a suburban North London site (NL, Bounds Green); the other two sites were in Porto, Portugal and Vienna, Austria. TSP was collected using a low volume sampler. Organic carbon (OC) and elemental carbon (EC) concentrations were measured using a thermal-optical carbon analyser. Parallel samplers collected TSP for subsequent GC-MS analysis of thirty-nine combustion-associated organic compounds; 16 polyaromatic hydrocarbons (PAHs) and 23 n-alkanes. OC and EC correlate well at all sites (r2 = 0.39-0.65), although the London inter-site correlations were low, suggesting that local sources of OC and EC have a significant influence on local concentrations. Concentrations do not vary widely across the four urban sites, despite the significant differences in urban characteristics. Seasonal patterns of OC:EC ratios were similar at the London and Vienna sites, with highest ratios in autumn and winter, and annual mean OC:EC ratios were identical at these sites. The Carbon Preference Index (CPI) indicated vehicle emissions to have a stronger influence over particulate concentrations at the Vienna and central London sites; there was a stronger biogenic signature in north London and Porto. In addition, two PAH compounds (pyrene and fluoranthene) previously associated with diesel exhaust, were correlated with OC and EC concentrations at the London and Vienna sites.  相似文献   

20.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at eight sampling sites during cold periods where heating is used (heating period) (February to March, 2005) and warm periods where heating is not required (non-heating periods) (August to September 2006) in the urban area of Anshan, an iron and steel city in northeastern China. Eleven PAH species were measured using GC-MS. The total average concentrations of PAHs ranged from 46.14 to 385.60 ng m(-3) in the heating period and from 5.28 to 146.40 ng m(-3) in the non-heating period. The lowest concentration of ∑PAHs was observed at Qianshan, a monitoring site far from the city and industrial area, and the highest concentration occurred in the site located at the factory area of Anshan Iron and Steel Incorporation. Moreover, ambient PAH profiles were studied and high molecular weight PAH (including 4-6 rings) species occurred in the high fractions. Toxic equivalent factors analysis gave the potential carcinogenic risks in Anshan. For the heating sampling period, BaP equivalent concentration is in the range of 41.98 to 220.83 ng m(-3), and 9.23 to 126.00 ng m(-3) for the non-heating sampling period. By diagnostic ratio analysis, traffic emission and combustion (coal or biomass) were potential sources for PAHs in Anshan. Finally, PCA results indicated the major sources were vehicle emission, steel industry emission, and coal combustion for both heating and non-heating seasons, which agreed with the results from the diagnostic ratio analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号