首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particle-bound PAHs were measured at three sites in southeastern Spain (an urban background location, a suburban-industrial site in the vicinity of two cement plants and a rural area) in order to investigate the influence of the type of location on PAH concentrations. A clear influence of cement production on particulate PAH levels could not be established since for the urban background and suburban-industrial sites the average concentrations of total PAHs in the PM2.5 fraction were very similar (1.085 and 1.151 ng m(-3), respectively), with benzo[b+k]fluoranthene and chrysene as the predominant compounds. Diagnostic ratios, used to identify PAH emission sources, pointed to traffic as the main source of particulate PAH at both locations. As expected, PAH levels at the rural site were significantly lower (0.408 ng m(-3) in the PM10 fraction) due to increasing distance from the emission sources. PAH seasonal variations at the urban background and suburban-industrial sites were the same as reported in many previous studies. Average winter to summer ratios for total PAHs were 4.4 and 4.9 for the urban background and industrial sites, in that order. This seasonal cycle could be partially explained by the higher temperature and solar radiation during summer enhancing PAH evaporation from the particulate phase and PAH photochemical degradation, respectively. The study of PAH distribution between the fine and coarse fraction at the urban site revealed that on average around 80% of total PAHs were associated with fine particles.  相似文献   

2.
The main goal of this study was to evaluate the impacts of a middle-sized Finnish urban area on the quality of sediments in an adjacent boreal lake. We investigated the sources and distribution of organic pollutants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)) in the sediments from urban stormwater traps and from Lake Vesijärvi. Grab surface sediment samples were taken from Lake Vesijärvi at various distances (25–2,000 m) from four major stormwater drainage outlets and at 15 urban stormwater traps in areas with different degrees of urbanization. These samples were analysed for 16 PAHs and 28 PCBs with gas chromatography–mass spectrometry. The concentrations of pollutants in the lake sediments were elevated in the vicinity of the urban shore (∑PAH 3–16, ∑PCB up to 0.02–0.3 mg/kg dw) and decreased as a function of distance (∑PAH 0.1–2.5, ∑PCB 0.01–0.3 mg/kg dw at a distance of more than 500 m from the shore), whereas contamination levels in suburban areas were notably lower (∑PAH 0.1–3, ∑PCB?<?LOQ–0.03 mg/kg dw; did not decline with distance). Possible sources and pathways of contamination were also investigated. The majority of stormwater trap sediments contained predominantly asphalt-derived PAHs due to pulverized pavement. PAHs in lake sediments were of pyrogenic origin, including the combustion of gasoline, diesel and coal. Suggested pathways of lake contamination are urban runoff discharge, boat traffic and atmospheric deposition.  相似文献   

3.
Thirty two polychlorinated biphenyl congeners (PCBs), hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) were analysed in passive sampler extracts from surface water-exposed semipermeable membrane devices (SPMDs) and in bed sediment samples from a small urban watercourse, the River Alna (Oslo, Norway). Performance reference compound-corrected data from the passive samplers deployed at three sites along the river were used to track PCB contamination in the overlying water. SPMDs were able to detect an increase in dissolved PCB concentrations at the site furthest downstream that was corroborated by bed sediment concentrations. In comparison, no major increase in concentration of HCB, PeCB or PAHs could be observed. Comparison of passive sampling-based overlying water concentrations with total concentrations measured in bed sediments supports the possibility of further PCB sources upstream of the study area. Diagnostic PAH ratios (from SPMDs) and PCB congener pattern (from sediments) were used in an attempt to identify possible contaminant sources to the Alna River. Selected PAH diagnostic ratios support a multiple emission source scenario and demonstrate the complexity of identifying specific sources of these compounds to surface waters. PCB congener patterns in sediments from all three sites tend to indicate a source of highly chlorinated PCBs (of the Archlor 1260 type) and either a source of lower chlorinated PCBs or the less-likely occurrence of dechlorination in sediment. Information collected during the present screening study also confirms the Alna River as a continuous source of PCBs to the Oslofjord.  相似文献   

4.
Different approaches are used to verify the adequacy of emission factors (EFs) and their use in emission inventories of persistent organic pollutants (POPs). The applicability of EFs was tested using atmospheric dispersion modelling to predict atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and resulting toxic equivalents (SigmaTEQ) and particulate matter <10 microm (PM(10)) in two rural locations in northern England (UK). The modelling was based on general assumptions of fuel composition, consumption and heating needs to simulate emissions of POPs from the domestic burning of coal and wood where ambient measurements were made in the winter of 1998. The model was used to derive the local contribution to ambient air concentrations, which were estimated independently based on comparative air measurements. The results support the hypothesis that in both villages, the majority of PAHs and the lower chlorinated PCDFs were locally released. The situation for PCBs and polychlorinated naphthalenes (PCNs) was different. While the EFs show the release of both compound groups from the domestic burning of coal and wood, the ambient levels of these "legacy POPs" in the villages were still clearly dominated by other sources. Rural areas relying mainly on fossil fuels can exceed the proposed UK ambient air quality standard for benzo[a]pyrene during winter. The measured EFs were then used to estimate the importance of the domestic burning of coal and wood to national emission inventories for these compound classes. Extrapolations to the UK suggest that the domestic burning of pure wood and coal were minor emitters for chlorinated POPs but contributed strongly to PAH and PM(10) levels in 2000. Finally, the UK's national POPs emission inventories based on source inventories and EF, as used here, were compared to estimates derived using the increase in atmospheric concentration of selected POPs.  相似文献   

5.
Seventeen parent polycyclic aromatic hydrocarbons (PAHs) and 38 congeners of polychlorinated biphenyls were measured at five different sediment depths (between the surface and ~300 cm below the seafloor) at 160 sites in Naples harbour. Total PAH (??PAH) and PCB (??PCB) concentrations ranged between 0.012?C21.73???nd 0.001?C0.222 mg kg???1, respectively. For PAHs, an evident and progressive decrease in concentration with depth documents the effects of a more intense anthropic impact of this group of pollutants in the recent period. A selected number of PAH isomer pairs (phenanthrene/anthracene, fluoranthene/pyrene and benzo(a)anthracene/crysene) were used to distinguish between contaminants of pyrolitic and petrogenic origin. More than 90% of PAHs present at the different depths of the studied sediments indicate pyrolitic industrial origins. On the other hand, relatively high concentrations of three- and four-ring PAHs suggest a limited contribution of vehicular emissions to the contamination of sediments. An unexpected and systematic increase of ??PCB concentration, exceeding values approved by international regulations, was found in the studied sediments, testifying to the uncontrolled discharge to the studied area from industrial and commercial activity on nearby land. Ecotoxicological risk levels calculated for PAHs suggests a relatively elevated level of toxicity in surface sediments decreasing with depth and very low toxicity values associated to PCB toxicity.  相似文献   

6.
Polycyclic aromatic hydrocarbons (16 EPA-PAHs) in urban surface soil from Jiaxing City were determined using HPLC. The total concentration of 16 EPA-PAHs was detected from 18.73 to 441.34 pg/g. Individual PAH occupation analysis demonstrates that four-ring PAHs comprise as much as 44.16% and were prevalent in the composition of PAH pollutants. The other components were two-ring PAHs (7.36%), three-ring PAHs (17.28%), five-ring PAHs (16.16%), and six-ring PAHs (15.04%). Source analysis on the characteristic ratios of anthracene(Ane)/[Ane+phenanthrene(Phe)], fluoranthene(Fla)/[Fla+pyrene(Pyr)], and benzo[a]pyrene(Bap)/benzo[g,h,i]perylene(Bgp) reveals that PAH pollutants originated mainly from coal combustion, but vehicular emission as a source was not negligible. All PAHs discussed in the paper have similar source in most sampling sites. The spatial distributions of pollution sources were closely related to geographic location, geographic condition, and living habit of indigenes. A linear relationship between 2-3-ring PAHs, 4-6-ring PAHs, SOM, and ∑PAHs were investigated and significant correlativity were expatiated lastly. It revealed that coefficient between 2-3-ring PAHs and ∑PAHs is 0.56, between 4-6-ring PAHs and ∑PAHs is 0.99, between SOM and ∑PAHs is 0.82.  相似文献   

7.
A sediment sampling based on a two-dimensional mapping was performed in the harbour of Trieste (northern Adriatic Sea), considering 28 sites exposed to pollutant inputs from harbour and industrial activities. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were determined in surface sediments, because these very persistent pollutants seem to be responsible for the depletion of benthic populations observed in this area. The correlation matrix indicates that PAHs and PCBs are non-correlated, and probably have different sources. Both cluster analysis performed on the sampling sites and graphical drawing of the PAH sediment contents make it possible to locate along the shoreline a band of more polluted sediments, clustered around a site facing a steelmaking factory, to be considered as the main source point for PAHs. The evaluation of phenanthrene to anthracene (P/AN) and fluoranthene to pyrene (FL/PY) ratios permits the assessment of the pyrolytic, industrial origin of these PAHs, rejecting a second possible source of hydrocarbons (i.e., an oil-pipeline terminal, situated near the steelmaking factory). Graphical drawing of the total PCB iso-concentrations reveals a different source-point for this other category of very persistent pollutants.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) were analysed in 39 soil samples (0–10 cm upper layer) collected in Belgrade, the capital of Serbia. The sampling sites were randomly selected from urban, urban/recreational and rural areas; the samples were collected in April and December 2003 and July and October 2004. The sum of the 16 PAHs corresponding to the recreational zone (298 μg/kg) was close to the urban zone (375 μg/kg). Mean soil ΣPAH concentration from rural areas was 18 μg/kg dry weight. Comparing to values observed in the urbanized locations around the world, the overall levels of PAHs in this study are low. The PAH ratios obtained pointed to a domination of pyrogenically formed PAHs in the examined soils. The dominant PAHs in soil samples in urban zones were fluoranthene, benz[a]anthracene, phenanthrene and pyrene, mostly emitted from noncatalyst vehicles which are still in use in Serbia. The total carcinogenic potency for each sampling site was calculated. Regardless of the used carcinogenic activity factors, carcinogenic potency of 7 sites were 3–9 times higher than the reference ones indicating the increased carcinogenic burden of soils from these sites.  相似文献   

10.
Urban areas constitute major pollution sources due to anthropogenic activities located in these areas. Among the legislated air pollutants, the particulate matter with an aerodynamic diameter less than or equal to 10 microns (PM10) and polycyclic aromatic hydrocarbons (PAH) are controlled under Directive 2008/50/EC and Directive 2004/107/EC, respectively due to their adverse health effects. A study was carried out at four urban and rural Spanish areas during the warm and cold seasons in 2008-2009 to quantify 19 PAH associated with the atmospheric PM10 by gas chromatography-mass spectrometry-mass spectrometry detection (GC-MS-MS) with the internal standard method. The particle-bound composition of the analysed PAH was 5 and 10 times greater in industrial and urban areas, respectively when compared to those measured in rural areas. The highest PAH concentrations during the cold period were possibly due to the additional contribution of domestic heating sources and meteorological conditions such as low temperature and solar irradiation. The use of molecular diagnostic ratios indicated that the possible, major PAH pollution sources in the most polluted areas were pyrogenic sources, mainly attributed to petroleum combustion sources (motor vehicle emissions and crude oil combustion). Petrogenic sources related to evaporative emissions also seemed to contribute in the most polluted area during the warm period. Those dates with high carcinogenic character according to the benzo(a)pyrene equivalent (BaP-eq) were also possibly attributed to petroleum combustion sources.  相似文献   

11.
The extent of correlation in polycyclic aromatic hydrocarbon (PAH) concentration data obtained by the UK PAH Monitoring and Analysis Air Quality Network from March 2008 to November 2010 has been assessed. Application of principal component analysis (PCA) to the dataset has revealed that the concentrations of the vast majority of PAHs are very highly correlated. The use of diagnostic PAH ratios (including a new benzo[b]naph[2,1-d]thiophene/benzo[a]pyrene diagnostic ratio), and a novel 'combined diagnostic ratio - PCA' approach has revealed information about the main sources of PAH at individual Network sites, allowing the sites to be grouped in terms of those influenced by solid fuel use, industry and traffic, and those of an urban or rural nature. Solid fuel use has also been delineated from other fuel burning. Conclusions are drawn about a number of UK PAH Network sites - four sites are shown to be influenced significantly by solid fuel use, and the sites in South Wales and at London Marylebone Road are found to be located in distinct and unusual PAH pollution climates - the identification of a unique PAH pollution climate in South Wales is a key and novel conclusion of the work.  相似文献   

12.
From March 2008 to February 2009, PM(10) samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) at eight sampling sites in Great Xiamen Bay, China. Analyses of the seasonal and spatial variations of these compounds revealed the following results. Significantly high levels of PAHs were found in the winter compared to the summer, sometimes exceeding 100 ng m(-3), and the spatial variations were influenced most by the sampling site surroundings. Composition profiles of PAHs of an urban and a rural site were shown to be very similar with a positive correlation coefficient larger than 0.9 at the 0.01 level of significance for the same season. Diagnostic ratios, together with principal component and multiple linear regression analysis, showed that more PAHs were from grass/wood/coal combustion in winter than in other seasons. The ratios of benzo[a]pyrene to benzo[e]pyrene (BaP-BeP) in winter and fall were 0.6-1.7 times higher than those in spring and summer, suggesting the importance of local emissions of PAHs. The BaP-BeP ratios in Kinmen were generally lower than those in Xiamen, indicating that the aging degree of PAHs was higher in Kinmen than in Xiamen. The external input of PAHs from upwind urban and industrial areas was one of the key factors causing high levels of PAHs in PM(10) in Great Xiamen Bay in winter.  相似文献   

13.
Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils collected from Dalian, China, for examination of distributions and composition profiles and their potential toxicity. The sum of 15 PAHs (SigmaPAHs) ranged from 190 to 8595 ng g(-1) dry weight, and showed an apparent urban-suburban-rural gradient in both SigmaPAHs and composition profiles. Using hierarchical cluster analysis (HCA), the sampling sites were grouped into four clusters corresponding to traffic area, park/residential area, suburban and rural areas. The ratios of naphthalene (Nap) and fluorene (Fl) versus fluoranthene (Flu), pyrene (Pyr) and indeno(1,2,3-cd)pyrene (InP) in the four clusters provided evidence of local distillation. The diagnostic ratios indicated the prevalent PAH sources were petroleum combustion and coal combustion in Dalian, and a cross plot of diagnostic ratios distinguished the urban samples from suburban and rural ones. Toxic potency assessment of soil PAHs presented a good relationship with benzo(a)pyrene (BaP) levels, toxic equivalent concentrations based on BaP (TEQ(BaP)) and dioxin-like toxic equivalent concentrations (TEQ(TCDD)). The study highlights that BaP is a good indicator for assessing the potential toxicity of PAHs, and presents a promising toxicity assessment method for soil PAHs.  相似文献   

14.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

15.
The purpose of this study was to determine the degree of contamination with polycyclic aromatic hydrocarbons (PAHs) in samples of urban soil from three European cities: Glasgow (UK), Torino (Italy) and Ljubljana (Slovenia). Fifteen PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) were measured in urban soil samples, using harmonised sampling, sample extraction and analyte quantification methods. Although the mean concentration of each PAH in urban soils of each city showed a wide range of values, high levels of contamination were only evident in Glasgow, where the sum of concentrations of 15 PAHs was in the range 1487-51,822 microg kg(-1), cf. ranges in the other two cities were about ten-fold lower (89.5-4488 microg kg(-1)). The three predominant PAHs were phenanthrene, fluoranthene and pyrene, with the sum of these compounds about 40% of the total PAH content. These data, together with some special molecular indices based on ratios of selected PAHs, suggest pyrogenic origins, especially motor vehicle exhausts, to be the major sources of PAHs in urban soils of the three cities. The largest concentrations for PAHs were often found in sites close to the historic quarters of the cities. Overall, the different climatic conditions, the organic carbon contents of soil, and the source apportionment were the dominant factors affecting accumulation of PAHs in soil.  相似文献   

16.
This paper reports the monitoring results of eleven polycyclic aromatic hydrocarbons (PAHs), four to six-ring, at two urban sites-Central & Western (CW) and Tsuen Wan (TW) in Hong Kong from January to December 2000; and the findings of a study conducted in 2001 of the partitioning of the gaseous and particulate phases of PAHs. The sum of the eleven PAHs under study (sigmaPAHs) was found to range from 6.46 to 38.8 ng m(-3). The annual mean levels at 12.2 ng m(-3) and 15.8 ng m(-3) for CW and TW respectively are comparable to those recorded for the previous two years and are also within the reported ranges for other metropolitan cities in the Asia Pacific region. Amongst the selected eleven PAHs, fluoranthene and pyrene were the two most abundant found in the urban atmosphere of Hong Kong during the study period accounting for approximately 80%, of the total PAHs. The ratios of benzo(a)pyrene to benzo(g,h,i)perylene (BaP/BghiP) and indeno(1,2,3-cd)pyrene to benzo(g,h,i)perylene (IDP/BghiP) indicate that diesel and gasoline vehicular exhausts were the predominant local emission sources of PAHs. Seasonal variations with high winter to summer ratios for each of the individual PAHs (CW: 1.6-16.7 and TW: 0.82-8.2) and for sigmaPAHs (CW: 1.9 and TW: 1.8) and a spatial variation of BaP amongst the air monitoring stations are noted. Results of correlation studies illustrate that local meteorological conditions such as ambient temperature, solar radiation, wind speed and wind direction have significant impact on the concentrations of atmospheric PAHs accounting for the observed seasonal variations. A snapshot comparison of the concentrations of PAHs at four sites including a roadside site, a rural site and the two regular urban sites CW and TW was also performed using the profiles of PAHs recorded on two particulate episode days in March 2000.  相似文献   

17.
The seasonal variations of concentrations of PAHs in the soil and the air were measured in urban and rural region of Dalian, China in 2007. In soil, mean concentrations of all PAHs in summer were larger than those in winter, whereas the concentrations of heavier weight PAHs in winter were larger than those in summer. Winter/summer concentration ratios for individual PAHs (R(W/S)) increased with the increase of molecular weight of PAHs in soil, indicating that PAHs with high molecular weight were more easily deposited to soil in winter than summer. In air, mean concentrations of all PAHs in winter were larger than those in summer. In comparison with the R(W/S) in soil, all the values of R(W/S) in air were larger than one indicating that the entire individual PAH concentrations in winter were larger than those in summer. The average concentration composition for each PAH compound in soil and air samples was determined and the seasonal change of PAH profile was very small. It was suggested that PAHs in soils and air had the same or similar sources both in winter and summer. The approach to the soil-air equilibrium was assessed by calculating fugacity quotients between soil and air using the soil and air concentrations. The calculated soil-air fugacity quotients indicated that soil acted as a secondary source to the atmosphere for all lighter weight PAHs (two-three rings) and it will continue to be a sink for heavier weight PAHs (five-six rings) in the Dalian environment, both in winter and summer. Medium weight PAHs (four-five rings) were close to the soil-air equilibrium and the tendency shifted between soil and air when season or function region changed. The fugacity quotients of PAHs in summer (mean temperature 298 K) were larger than those in winter (mean temperature 273 K), indicating a higher tendency in summer than winter for PAHs to move from soil to air. The variation of ambient conditions such as temperature, rainfall, etc. can influence the movement of PAHs between soil and air. Most of the fugacity quotients of PAHs for the urban sites were larger than that for the rural site both in winter and summer. This phenomenon may be related with that the temperatures in urban sites were higher than those in the rural site because of the urban heat island effect.  相似文献   

18.
PAH and PCB in soils of Switzerland--status and critical review   总被引:1,自引:0,他引:1  
The surface soil concentrations (0-20 cm) of the Swiss soil monitoring network (NABO) with 105 observation sites representing all major land use types ranged for the sum of 16 EPA PAH (PAH(16)) from 32 to 8465 microg kg(-1) (median 163 microg kg(-1)), for benzo[a]pyrene (BaP) from 0.5 to 1129 microg kg(-1) (median 13 microg kg(-1)) and for the sum of seven IRMM PCB (PCB(7)) from 0.5 to 12 microg kg(-1) (median 1.6 microg kg(-1)). The legal guide values of Switzerland were exceeded for PAH(16) at only three and for BaP at two sites. The PCB(7) concentrations were clearly below any assessment value. The concentration ranges were overlapping between all land use types. Tendencies for higher concentrations were observed at urban and viticulture sites. The overall measurement precision at repeatability conditions ranged from 1 to 37% RSD for PAH(16), BaP and PCB(7). The median bias for the chemical analysis was around zero for PAH(16), +5% for BaP and -5% for PCB(7) with spreads ranging from less than -20% up to more than +30%. The PAH profiles were clearly dominated by phenanthrene. Stratification by land use revealed a prevalence of benzo[a]pyrene at urban and naphthalene at conservation sites. For PCB, the general congener rank order was PCB no. 153 > 138 > 101 > 180. From a broad correlation screening only PAH(16)/BaP (r = 0.88**) were relevant for practical soil protection. The extensive comparison with other studies was severely biased by the lack of harmonisation, especially concerning sampling depth, sampling support, analytical method and the sum calculation procedure.  相似文献   

19.
Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops—a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n?=?32) areas were evaluated for five PAHs––naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene—and compared with control area locations with minimum petroleum-related activity (n?=?16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml–1) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg–1. Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r?=?0.82, P?<?0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum activity. We conclude that in order to reduce the soil PAH exposure in urban environment, petrol pumps and mechanical workshops must be shifted to less densely populated areas because of their role as important point sources for PAH emission.  相似文献   

20.
Needles of three pine species (Pinus halepensis, Pinus pinea and Pinus nigra) were analysed to assess the occurrence of polycyclic aromatic hydrocarbons (PAHs) in 34 sites located throughout the Ebro River, in Northeast Spain. Overall, the concentration varied between 55 and 808 ng g − 1 (dry weight). The three- and four-ring PAHs were the most representative, with phenanthrene having 43% of the total PAH load and naphthalene showing a high incidence in rural areas. Despite matrix apparent similarities, P. halepensis needles revealed higher entrapment levels than P. nigra and P. pinea, the latter showing the lowest levels. The assessment of possible sources using PAH ratios (phenanthrene/anthracene and fluoranthene/pyrene) did not reveal a clear tendency regarding the distinction of petrogenic and pyrogenic sources in general, reflecting heterogeneous sources of PAHs in the Ebro area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号