首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5?10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m3 for PM2.5 and 331.36, 190.01, and 184.60 μg/m3 for PM2.5?10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5?10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5?10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.  相似文献   

2.
因子分析法解析北京市大气颗粒物PM10的来源   总被引:17,自引:3,他引:17  
2004年10月份在北京市6个采样点采集了大气PM10样品,分析了大气颗粒物的质量浓度、元素组成、离子、有机碳(OC)和元素碳(EC)的浓度,并用因子分析模型对颗粒物的来源进行了研究。结果显示,北京市大气颗粒物的来源主要有6类:建筑水泥尘/机动车尾气尘/燃煤尘、土壤风沙尘、二次粒子尘、工业粉尘、生物质燃烧尘和燃油尘。用模型计算得到的各源对PM10的贡献率分别为建筑水泥尘/机动车尾气尘/燃煤尘占36.57%、土壤风沙尘占16.07%、二次粒子尘占12.33%、工业粉尘占10.29%、生物质燃烧尘占6.07%、燃油尘占3.84%、其它占14.84%。其中建筑水泥/机动车尾气尘/燃煤尘、土壤风沙尘、二次粒子尘、工业粉尘是大气颗粒物PM10的主要来源。实验表明,在缺少源成分谱时可以用因子分析模型来分析大气颗粒物的来源及其相对贡献。  相似文献   

3.
Air samples were collected in Izmir, Turkey at two (suburban and urban) sites during three sampling programs in 2002 and 2004 to determine the ambient concentrations of several monoaromatic, chlorinated and oxygenated volatile organic compounds (VOCs). Samples were analyzed for 60 VOCs using gas chromatography/mass spectrometry and 28 compounds were detected in most samples. On the average, urban air VOC concentrations were about four times higher than those measured at the suburban site. Toluene (40.6%) was the most abundant compound in suburban site and was followed by benzene (7.4%), o,m-xylene (6.5%), and 1,2-dichloroethane (5.1%). In urban site, toluene (30.5%), p-xylene (14.9%), o,m-xylene (11.4%), and ethyl benzene (7.2%) were the dominating compounds in summer. In winter, toluene (31.1%), benzene (23.9%), 1,2-dichloroethane (9.5%), and o,m-xylene (8.2%) were the most abundant compounds. Receptor modeling (positive matrix factorization) has been performed to estimate the contribution of specific source types to ambient concentrations. Six source factors (gasoline vehicle exhaust, diesel vehicle exhaust+residential heating, paint production/application, degreasing, dry cleaning, and an undefined source) were extracted from the samples collected in the urban site. Three source factors (gasoline vehicle exhaust, diesel vehicle exhaust, and paint production/application) were identified for the suburban site.  相似文献   

4.
2019年10月12日—11月25日,使用单颗粒气溶胶飞行时间质谱仪(SPAMS)在位于长沙市的湖南省生态环境厅点位进行了为期45 d的定点监测。结果表明,监测期间长沙市总体空气质量小时级别优、良天气占比为80.3%。长沙市首要污染物为PM_(2.5),其主要来源为机动车尾气源,二次无机源次之,工业工艺源排在第三位,占比分别为27.4%,21.5%和17.4%。整体来看,监测期间PM_(2.5)质量浓度的升高大多伴随着以上3种污染源颗粒物的同步升高。机动车尾气源具有明显的早高峰,工业工艺源、生物质燃烧源和餐饮源夜间占比增加。在偏东方向气团主导下,工业工艺源和燃煤源贡献最大;在东北方向气团主导下,PM_(2.5)质量浓度最高,且机动车尾气源占比最高。  相似文献   

5.
利用单颗粒气溶胶质谱仪(SPAMS)于2018年1月1日—2019年12月31日对上海市浦东新区环境空气PM2.5开展高时间分辨化学成分监测。结果表明,2019年监测点空气质量总体优于2018年,AQI达标率由74.8%升高至86.6%。通过对PM2.5成分分类,最终确定了8类颗粒物,相较于2018年,2019年富钾颗粒物升幅较为明显,左旋葡聚糖、重金属和元素碳有小幅增加,其余各组分相对减少。对PM2.5排放源分类分析显示,机动车尾气源占比>25%,其中2018年3月、2018年7月、2019年2和3月贡献超过40%;二次无机源和燃煤源呈现一定的季节变化特点,整体秋冬季高于春夏季,2019年燃煤源占比较2018年下降了41%;工业排放源2018年5和10月、2019年1和5月占比相对较高,其余各月份占比相对较为稳定。  相似文献   

6.
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19–97% of various PAHs, vehicular emissions 0–70%, diesel based sources 0–81% and other miscellaneous sources 0–20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R 2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.  相似文献   

7.
质谱直接测量法解析盐城市大气细颗粒物来源   总被引:3,自引:0,他引:3  
为全面了解盐城市大气颗粒物的组成,摸清以PM2.5为首要污染物的来源,说清其化学组分和源贡献率,于2014年12月16日00:00—2014年12月21日09:00,利用在线单颗粒气溶胶质谱仪,对盐城市细颗粒物进行实时在线源解析。结果表明,盐城首要污染物为燃煤,占比为23.7%,其次是机动车尾气,占比为18.3%,第三位是扬尘,占总颗粒数的15.7%,生物质燃烧占比为14.8%位列第四,工业工艺源、二次无机源和其他源贡献率相对较小。  相似文献   

8.
Ni and V have been determined in snow and ice collected at a high altitude location (Col du D?me) near the summit of Mont Blanc on the French-Italian border; dated from the 1960s and 1990s. Ni and V were simultaneously determined by inductively coupled plasma sector field mass spectrometry. Measured concentrations range from 6 to 700 pg g(-1) and 4 to 1,100 pg g(-1) for Ni and V, respectively. The results show pronounced seasonal variations in the concentrations of both metals, with high concentration values in summer layers and much lower values for winter layers. These seasonal variations are linked especially with the existence of inversion layers during winter months. Ni and V concentrations in excess of the contributions from rock and soil dust (Ni(excess), V(excess)) appear to be mainly associated with anthropogenic inputs, with pronounced seasonal variations. Large variations in the V(excess)/Ni(excess) ratio are observed, with a higher ratio in summer than in winter. This shows differences in anthropogenic inputs at Col du D?me during the different parts of the year. The above ratio was compared with the corresponding ratios for oil combustion from stationary sources and the exhaust from gasoline and diesel engines. It appears that Ni and V concentrations at Col du D?me are probably the result of changing combinations of contributions from oil combustion for power generation, industrial and residential uses, on one side, and automobile and truck traffic, on the other side, with possibly a significant contribution from Ni smelters in Russia during winter months.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area were analyzed by gas chromatography–mass spectrometry. A chemical mass balance (CMB) model developed by the U.S. Environmental Protection Agency (EPA), CMB8.2, was used to apportion sources of PAHs. Seven possible sources, including coal residential, coal power plant, diesel engines exhaust, gasoline engines exhaust, coke oven, diesel oil leaks, and wood burning, were chosen as the major contributors for PAHs in coastal surface sediments. To establish the fingerprints of the seven sources, source profiles were collected from literatures. After including degradation factors, the modified model results indicate that diesel oil leaks, diesel engines exhaust, and coal burning were the three major sources of PAHs. The source contributions estimated by the EPA’s CMB8.2 model were 9.25%, 15.05%, and 75.70% for diesel oil leaks, diesel engines exhaust, and coal burning, respectively.  相似文献   

10.
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Delhi were evaluated to study particulate PAHs profiles during the different seasons of 2003. Samples of urban suspended particulate matter were collected during January 2003 to December 2003 at three locations (Okhla, Dhaulakuan and Daryaganj), using a high volume sampler provided with glass fiber filters. Samples were analyzed using the gas chromatography technique. The annual average concentrations of total PAHs were found as 1,049.3 ng/m(3) at Okhla, 1,344.37 ng/m(3) at Daryaganj, and 1,117.14 ng/m(3) at Dhaulakuan. The seasonal average concentrations were found to be maximum in winter and minimum during the monsoon season. Principal Component Analysis (PCA) of the data was also carried out and the results indicate that diesel and gasoline driven vehicles are the principal sources of PAHs at all the three sites under investigation. Other sources might come from stationary combustion sources such as cooking fuel combustion and industrial emission.  相似文献   

11.
于2016年12月30日—2017年2月4日,利用单颗粒气溶胶飞行时间质谱仪(SPAMS),对合肥市PM_(2.5)开展来源解析连续监测,共捕捉到4次较为明显的灰霾过程,对颗粒物种类及质谱特征进行了分析。结果显示,监测期间合肥市主要颗粒物成分为元素碳(EC)(31. 9%)、富钾(K)(16. 6%)、有机碳(OC)(16. 0%)及混合碳颗粒(ECOC)(15. 0%)等。主要污染源为机动车尾气源(24. 5%)、工业工艺源(22. 7%)、燃煤源(14. 1%)、二次无机源(13. 5%)等。污染天气发生时,工业工艺源占比上升2. 2个百分点,生物质燃烧和燃煤源占比分别下降1. 7和2. 7个百分点,机动车尾气和扬尘源基本持平,表明此次污染过程主要受到工业工艺源的累积影响。  相似文献   

12.
Total suspended particulate (TSP) samples were collected weekly over a period of one year at four European sites during 1995/6. Two sites were in London-a Central London site (CL, St Paul's Cathedral) and a suburban North London site (NL, Bounds Green); the other two sites were in Porto, Portugal and Vienna, Austria. TSP was collected using a low volume sampler. Organic carbon (OC) and elemental carbon (EC) concentrations were measured using a thermal-optical carbon analyser. Parallel samplers collected TSP for subsequent GC-MS analysis of thirty-nine combustion-associated organic compounds; 16 polyaromatic hydrocarbons (PAHs) and 23 n-alkanes. OC and EC correlate well at all sites (r2 = 0.39-0.65), although the London inter-site correlations were low, suggesting that local sources of OC and EC have a significant influence on local concentrations. Concentrations do not vary widely across the four urban sites, despite the significant differences in urban characteristics. Seasonal patterns of OC:EC ratios were similar at the London and Vienna sites, with highest ratios in autumn and winter, and annual mean OC:EC ratios were identical at these sites. The Carbon Preference Index (CPI) indicated vehicle emissions to have a stronger influence over particulate concentrations at the Vienna and central London sites; there was a stronger biogenic signature in north London and Porto. In addition, two PAH compounds (pyrene and fluoranthene) previously associated with diesel exhaust, were correlated with OC and EC concentrations at the London and Vienna sites.  相似文献   

13.
Principal component analysis (PCA) coupled with a multilinear regression analysis (MLRA) was applied to PM(10) speciation data series (2002-2005) from four sampling sites in a highly industrialised area (ceramic production) in the process of implementing emission abatement technology. Five common factors with similar chemical profiles were identified at all the sites: mineral, regional background (influenced by the industrial estate located on the coast: an oil refinery and a power plant), sea spray, industrial 1 (manufacture and use of glaze components, including frit fusion) and road traffic. The contribution of the regional background differs slightly from site to site. The mineral factor, attributed to the sum of several sources (mainly the ceramic industry, but also with minor contributions from soil resuspension and African dust outbreaks) contributes between 9 and 11 microg m(-3) at all the sites. Source industrial 1 entails an increase in PM(10) levels between 4 and 5 microg m(-3) at the urban sites and 2 microg m(-3) at the suburban background site. However, after 2004, this source contributed less than 2 microg m(-3) at most sites, whereas the remaining sources did not show an upward or downward trend along the study period. This gradual decrease in the contribution of source industrial 1 coincides with the implementation of PM abatement technology in the frit fusion kilns of the area. This relationship enables us to assess the efficiency of the implementation of environmental technologies in terms of their impact on air quality.  相似文献   

14.
The objective of this study was to determine if there is an exposure gradient in particulate matter concentrations for people living near interstate highways, and to determine how far from the highway the gradient extends. Air samples were collected in a residential area of Greater Cincinnati in the vicinity of two major highways. The measurements were conducted at different distances from the highways by using ultrafine particle counters (measurement range: 0.02-1 microm), optical particle counters (0.3-20 microm), and PM2.5 Harvard Impactors (0.02-2.5 microm). The collected PM2.5 samples were analyzed for mass concentration, for elemental and organic carbon, and for elemental concentrations. The results show that the aerosol concentration gradient was most clearly seen in the particle number concentration measured by the ultrafine particle counters. The concentration of ultrafine particles decreased to half between the sampling points located at 50 m and 150 m downwind from the highway. Additionally, elemental analysis revealed a gradient in sulfur concentrations up to 400 m from the highway in a residential area that does not have major nearby industrial sources. This gradient was qualitatively attributed to the sulfate particle emissions from diesel engine exhausts, and was supported by the concentration data on several key elements indicative of traffic sources (road dust and diesel exhaust). As different particulate components gave different profiles of the diesel exposure gradient, these results indicate that no single element or component of diesel exhaust can be used as a surrogate for diesel exposure, but more comprehensive signature analysis is needed. This characterization is crucial especially when the exposure data are to be used in epidemiological studies.  相似文献   

15.
The main purpose of this paper was to carry out a source apportionment of suspended particulate matter (SPM) samples using positive matrix factorization procedure. The central and local Government of Japan introduced strict emission regulations in 2002/10 and 2003/10, respectively, in curbing SPM pollution from major metropolitans. This paper also highlighted the impact of the measures taken by the central and local Government of Japan on the reduction of SPM and the contributions of sources. SPM samples were collected for 6 years starting from 1999 to 2005 at two sites, i.e., site A (urban) and site B (suburban) of Yokohama, Japan. Microwave digestion and inductively coupled plasma-mass spectroscopy (ICP-MS) were employed to measure Mg, Al, Ca, V, Cr, Mn, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and Bi, while water soluble ions (Na + , NH4  +_{4}^{\ \,+}, K + , Ca2 + , Mg2 + , Cl − , NO3  -_{3}^{\ \,-} and SO4  2-)_{4}^{\ \,2-}) as well as carbonaceous mass (EC and OC) were analyzed using ion chromatograph and CHN analyzer, respectively. The sources identified at two sites were automobile, soil dust, marine aerosol, mixed sources, and secondarily formed aerosol. Also, source quantification was performed. Automobile and soil dust were striking contributors at site A. Automobile and soil dust of SPM aerosol might be produced from local origin at current study areas. Besides, Asian dust had an impact on high concentrations of SPM aerosol in some certain period of the year due to the outflows of East Asian emission. In contrast, secondary aerosol in the form of sulfate and ammonium as well as mixed sources (coal, long-transported Cs, and other unknown sources) were remarkable at site B. Stationary/industrial combustion has apparently more impact on the release of SPM components at site B than A. Automobile regulations in 2002 and 2003, respectively, resulted in reduction of SPM by 28% for site A and 16% for site B. There was also net reduction of automobile contribution at both sites due to the above measures being implemented.  相似文献   

16.
A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 microg m(-3) among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m(-3)). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 +/- 17.1% for truck repair shops, 65.4 +/- 20.4% for the docks and 38.4 +/- 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations.  相似文献   

17.
Inhalation of emissions from petrol and diesel exhaust particulates is associated with potentially severe biological effects. In the present study, polycyclic aromatic hydrocarbons (PAHs) were identified from smokes released by the automobile exhaust from petrol and diesel. Intensive sampling of unleaded petrol and diesel exhaust were done by using 800-cm3 motor car and 3,455-cm3 vehicle, respectively. The particulate phase of exhaust was collected on Whatman filter paper. Particulate matters were extracted from filter paper by using Soxhlet. PAHs were identified from particulate matter by reverse phase high performance liquid chromatography using C18 column. A total of 14 PAHs were identified in petrol and 13 in case of diesel sample after comparing to standard samples for PAH estimation. These inhalable PAHs released from diesel and petrol exhaust are known to possess mutagenic and carcinogenic activity, which may present a potential risk for the health of inhabitants.  相似文献   

18.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.  相似文献   

19.
Coal combustion in the power sector gives rise to the emission of primary and secondary particulate pollutants. Since the emission of pollutants depends on coal quality and combustion technology, and given that transport, transformation and deposition of contaminants depend on regional climatic conditions, specific studies for the power stations is needed to evaluate their environmental impacts. Monitoring of ambient respirable suspended particulate matter (RSPM) and suspended particulate matter (SPM) levels around a large coal-fired power station in India was carried out. The specific objectives were the determination of spatial and seasonal variability in RSPM and SPM levels, and their relationship with meteorological parameters such as wind velocity and relative humidity. The results have shown a marked seasonal trend and spatial variability in RSPM and SPM levels in the study area. Higher concentrations of ambient RSPM and SPM were found in downwind monitoring stations compared to upwind direction. Ratios of RSPM to SPM and correlation coefficient values between RSPM and SPM along with meteorological parameters were also worked out. Relative humidity and wind velocity have shown an inverse relation with particulate deposition pattern.  相似文献   

20.
Particle-bound PAHs were measured at three sites in southeastern Spain (an urban background location, a suburban-industrial site in the vicinity of two cement plants and a rural area) in order to investigate the influence of the type of location on PAH concentrations. A clear influence of cement production on particulate PAH levels could not be established since for the urban background and suburban-industrial sites the average concentrations of total PAHs in the PM2.5 fraction were very similar (1.085 and 1.151 ng m(-3), respectively), with benzo[b+k]fluoranthene and chrysene as the predominant compounds. Diagnostic ratios, used to identify PAH emission sources, pointed to traffic as the main source of particulate PAH at both locations. As expected, PAH levels at the rural site were significantly lower (0.408 ng m(-3) in the PM10 fraction) due to increasing distance from the emission sources. PAH seasonal variations at the urban background and suburban-industrial sites were the same as reported in many previous studies. Average winter to summer ratios for total PAHs were 4.4 and 4.9 for the urban background and industrial sites, in that order. This seasonal cycle could be partially explained by the higher temperature and solar radiation during summer enhancing PAH evaporation from the particulate phase and PAH photochemical degradation, respectively. The study of PAH distribution between the fine and coarse fraction at the urban site revealed that on average around 80% of total PAHs were associated with fine particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号