首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.  相似文献   

2.
To analyze polycyclic aromatic hydrocarbons (PAHs) at an urban site in Seoul, South Korea, 24-hr ambient air PM2.5 samples were collected during five intensive sampling periods between November 1998 and December 1999. To determine the PAH size distribution, 3-day size-segregated aerosol samples were also collected in December 1999. Concentrations of the 16 PAHs in the PM2.5 particles ranged from 3.9 to 119.9 ng m−3 with a mean of 24.3 ng m−3.An exceptionally high concentration of PAHs(∼120 ng m−3) observed during a haze event in December 1999 was likely influenced more by diesel vehicle exhaust than by gasoline exhaust, as well as air stagnation, as evidenced by the low carbon monoxide/elemental carbon (CO/EC) ratio of 205 found in this study and results reported by previous studies. The total PAHs associated with the size-segregated particles showed unimodal distributions. Compared to the unimodal size distributions of PAHs with modal peaks at < 0.12 μm measured in highway tunnels in Los Angeles (Venkataraman and Friedlander, 1994), four- to six-ring PAHs in our study had unimodal size distributions, peaking at the larger size range of 0.28–0.53 μm, suggesting the coagulation of freshly emitted ultrafine particles during transport to the sampling site. Further, the fraction of PAHs associated with coarse particles(> 1.8 μm) increased as the molecular weight of the PAHs decreased due to volatilization of fine particles followed by condensation onto coarse particles.  相似文献   

3.
A preliminary study to determine the profile of PAHs in the exhaust of diesel vehicles plying on Delhi roads was conducted. Two different types of diesel vehicles (buses and trucks) with different age groups were selected for sampling purpose. The concentration of Total PAHs (12PAHs) was found to be 50.76 ± 6.62 and 57.72 ± 4.15 mg/g in the exhaust of buses and trucks, respectively. The levels of PAHs were found to be high in trucks as compared to that of buses. The total PAHs concentration in the present study was found to be higher as compared to other studies. Such a high concentration could be attributed to different parameters like the age of the vehicles, driving conditions, the fuel quality and the emission standards.  相似文献   

4.
南京市大气颗粒物中多环芳烃变化特征   总被引:4,自引:2,他引:2  
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

5.
In order to characterize and compare the chemical composition of diesel particulate matter and ambient air samples collected on filters, different extraction procedures were tested and their extraction efficiencies and recoveries determined. This study is an evaluation of extraction methods using the standard 16 EPA PAHs with HPLC fluorescence analysis. Including LC analysis also GC and MS methods for the determination of PAHs can be used. Soxhlet extraction was compared with ultrasonic agitation and pressurized fluid extraction (PFE) using three solvents to extract PAHs from diesel exhaust and urban air particulates. The selected PAH compounds of soluble organic fractions were analyzed by HPLC with a multiple wavelength shift fluorescence detector. The EPA standard mixture of 16 PAH compounds was used as a standard to identify and quantify diesel exhaust-derived PAHs. The most effective extraction method of those tested was pressurized fluid extraction using dichloromethane as a solvent.  相似文献   

6.
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19–97% of various PAHs, vehicular emissions 0–70%, diesel based sources 0–81% and other miscellaneous sources 0–20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R 2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.  相似文献   

7.
Public transport in Delhi was amended by the Supreme Court of India to use Compressed Natural Gas (CNG) instead of diesel or petrol. After the implementation of CNG since April 2001, Delhi has the highest fraction of CNG-run public vehicles in the world and most of them were introduced within 20 months. In the present study, the concentrations of various criteria air pollutants (SPM, PM10, CO, SO2 and NOx) and organic pollutants such as benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) were assessed before and after the implementation of CNG. A decreasing trend was found for PAHs, SO2 and CO concentrations, while the NOx level was increased in comparison to those before the implementation of CNG. Further, SPM, PM10, and BTX concentrations showed no significant change after the implementation of CNG. However, the BTX concentration demonstrated a clear relation with the benzene content of gasoline. In addition to the impact of the introduction of CNG the daily variation in PAHs levels was also studied and the PAHs concentrations were observed to be relatively high between 10 pm to 6 am, which gives a proof of a relation with the limited day entry and movement of heavy vehicles in Delhi.  相似文献   

8.
To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5?10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m3 for PM2.5 and 331.36, 190.01, and 184.60 μg/m3 for PM2.5?10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5?10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5?10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.  相似文献   

9.
Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops—a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n?=?32) areas were evaluated for five PAHs––naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene—and compared with control area locations with minimum petroleum-related activity (n?=?16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml–1) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg–1. Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r?=?0.82, P?<?0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum activity. We conclude that in order to reduce the soil PAH exposure in urban environment, petrol pumps and mechanical workshops must be shifted to less densely populated areas because of their role as important point sources for PAH emission.  相似文献   

10.
通过国内外文献调研和硝酸雾采样方法比对实验研究,提出了固定污染源废气中的硝酸雾包括硝酸气体、硝酸液滴及颗粒物中的硝酸盐。建立了固定污染源废气中硝酸雾的分析方法:使用经1 mol/L Na2CO3溶液浸渍的石英滤膜捕集固定污染源废气中的硝酸雾,离子色谱法进行分析。实验结果表明:当采样体积为0.4 m3时,方法检出限为0.04 mg/m3;低、中、高浓度空白加标样品相对标准偏差均在9.2%以内,加标回收率为89.9%~117%。选取4种典型硝酸雾固定污染源废气进行实际样品采集与分析,硝酸雾质量浓度分别为1.62、1.86、1.63、19.8 mg/m3。对电子元件电镀车间固定污染源废气进行不同浓度的实际样品加标回收实验,加标回收率分别为86.0%和104%。  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

12.
为全面测量固定源湿法脱硫烟气中多形态颗粒物的排放浓度及其离子组成特征,提出了一种基于一级冷凝、二级过滤和一级冲击吸收的多形态烟气颗粒物的同步测量方法,外场实测了3种湿法脱硫和除尘工艺的排放水平。现场测试表明:简易湿法除尘脱硫(NaOH法)一体化装置烟气中可过滤颗粒物(FPM)浓度为(36±11)mg/m3,可逃逸颗粒物(EPM)浓度为(33±7)mg/m3;氧化镁法+布袋除尘工艺烟气中FPM浓度为(14±5)mg/m3,EPM浓度为(13±6)mg/m3;石灰石-石膏脱硫+电袋除尘工艺烟气中FPM浓度低,小于3 mg/m3,EPM浓度为(6±1)mg/m3;烟气中EPM是传统滤膜法检测FPM浓度的0.7~5.7倍,EPM的主要存在形态为冷凝液中的可溶解颗粒物(DPM),颗粒物的组分与脱硫方法密切相关,各形态颗粒物的主要组分是SO42-、SO32-、NO3-、NO2-、NH4+、Cl-、Na+、Mg2+和Ca2+等离子。  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area were analyzed by gas chromatography–mass spectrometry. A chemical mass balance (CMB) model developed by the U.S. Environmental Protection Agency (EPA), CMB8.2, was used to apportion sources of PAHs. Seven possible sources, including coal residential, coal power plant, diesel engines exhaust, gasoline engines exhaust, coke oven, diesel oil leaks, and wood burning, were chosen as the major contributors for PAHs in coastal surface sediments. To establish the fingerprints of the seven sources, source profiles were collected from literatures. After including degradation factors, the modified model results indicate that diesel oil leaks, diesel engines exhaust, and coal burning were the three major sources of PAHs. The source contributions estimated by the EPA’s CMB8.2 model were 9.25%, 15.05%, and 75.70% for diesel oil leaks, diesel engines exhaust, and coal burning, respectively.  相似文献   

14.
A GC-MS procedure for the determination of hydrocarbons in air samples from Oviedo, Spain, was developed. Air hydrocarbons were sampled with a high volume sampler equipped with a holder containing a glass fiber filter, to trap the particulate phase, and two polyurethane foams to capture hydrocarbons of the vapour phase. Compounds were extracted with CH2Cl2 by Soxhlet extraction and then fractionated using column chromatography with alumina silica. Analyses of the fractions were performed by GC-MS in the electron ionization mode. PAHs and n-alkanes were the compounds examined in this work. Samples collected in the vicinity of the Faculty of Chemistry (a semi-urban area) were analysed. The total concentration of PAHs in the air samples analysed ranged from 28 to 76 ng m(-3). The total concentration of n-alkanes and PAHs in the vapour phase exceeded the concentration in the particulate phase in the samples analysed.  相似文献   

15.
The aim of this study is to determine the possibility of using Rinodina sophodes (Ach.) Massal., a crustose lichen as polycyclic aromatic hydrocarbons (PAHs) bioaccumulator for evaluation of atmospheric pollution in tropical areas of India, where few species of lichens are able to grow. PAHs were identified, quantified and compared to evaluate the potential utility of R. sophodes. The limit of detection for different PAHs was found to be 0.008–0.050 μg g − 1. The total PAHs in different sites were ranged between 0.189 ± 0.029 and 0.494 ± 0.105 μg g − 1. The major sources of PAHs were combustion of organic materials, traffic and vehicular exhaust (diesel and gasoline engine). Significantly higher concentration of acenaphthylene and phenanthrene indicates road traffic as major source of PAH pollution in the city. Two-way ANOVA also confirms that all PAHs content showed significant differences between all sampling sites (P 1%). This study establishes the utility of R. sophodes in monitoring the PAHs accumulation potentiality for development of effective tool and explores the most potential traits resistant to the hazardous environmental conditions in the tropical regions of north India, where no such other effective way of biomonitoring is known so far.  相似文献   

16.
In order to evaluate the exposure of the northern India rural population to polyaromatic hydrocarbon (PAH) inhalation, indoor pollution was assessed by collecting and analyzing the respirable particulate matter PM2.5 and PM10 in several homes of the village Bhithauli near Lucknow, UP. The home selection was determined by a survey. Given the nature of biomass used for cooking, homes were divided into two groups, one using all kinds of biomass and the second type using plant materials only. Indoor mean concentrations of PM2.5 and associated PAHs during cooking ranged from 1.19 ± 0.29 to 2.38 ± 0.35 and 6.21 ± 1.54 to 12.43 ± 1.15 μg/m3, respectively. Similarly, PM10 and total PAHs were in the range of 3.95 ± 1.21 to 8.81 ± 0.78 and 7.75 ± 1.42 to 15.77 ± 1.05 μg/m3, respectively. The pollutant levels during cooking were significantly higher compared to the noncooking period. The study confirmed that indoor pollution depends on the kind of biomass fuel used for cooking.  相似文献   

17.
Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m???3, respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.  相似文献   

18.
The volatile organic pollutants from direct vehicular exhaust were trapped with activated charcoal, desorbed with carbon disulphide and analysed by GC/MS with tert-butyl benzene as an internal standard. A comparative study was made from the exhaust of 1000 cc, 1300 cc, 1600 cc cars, pickup, lorry(diesel), 125 cc and 70 cc motorbikes. The level of pollutants emitted were in the following order, motorbike(petrol) car(petrol) pickup(petrol) lorry(diesel). The range of highest emission (125 cc motorbike) to the lowest emission (lorry(diesel)) was of the order of 102 for benzene, 6×102 for ethyl benzene, 5×102 for toluene and 3×102 for xylenes. Among cars, those fitted with catalytic convertors emitted a lower level of benzene (2 to 3 times) when compared with those without catalytic convertors. Similar studies on the air in air-conditioned buses, non air-conditioned buses and three metres from the edge of the road shows that they have the same pollutant level. The level of these pollutant as compared to those from direct car exhaust are of the order of 102 times less for benzene, xylene and toluene and 103 times less for ethylbenzene. The levels of benzene, toluene, ethylbenzene and xylenes by the road side and in the buses were found to be lower than the exposure limits of ACGIH, OSHA and EH40.  相似文献   

19.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

20.
A preliminary study to determine the profile of PAHs in the exhaust of gasoline vehicles in Delhi was conducted. Three different types of vehicles (cars, autorickshaws and scooters) were selected with different age groups for sampling purpose. The concentration of Total PAHs (Σ12PAHs) was found to be 27.27 ± 2.27, 28.61 ± 3.70 and 29.81 ± 3.57 mg/g in the exhaust of cars, auto- rickshaws (three wheelers) and two wheelers, respectively. The levels of PAHs were found to be high in scooter exhaust as compared to that of cars and autorickshaws. The total PAHs concentration in the present study was found to be higher as compared to other studies. Such a high concentration could be attributed to different parameters like the age of the vehicles, driving conditions, the fuel quality and the emission standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号