首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.  相似文献   

2.
九龙江龙岩段地表水中多环芳烃分布与污染源解析   总被引:2,自引:2,他引:0  
用竹炭固相萃取恒波长同步荧光法测定了九龙江龙岩段水体中16种优控多环芳烃(PAHs)的含量。结果表明:龙岩市省控断面河水中2010年11月(冬季)多环芳烃的质量浓度为58.3×10-9~1 328.5×10-9g/L,平均为387.72×10-9g/L;2011年9月(秋季)水中总多环芳烃质量浓度为5.9×10-9~188.4×10-9g/L,平均为77.46×10-9g/L;7月(夏季)多环芳烃的质量浓度为16.7×10-9~1 203.3×10-9g/L,平均为475.05×10-9g/L,同国内外河流相比,九龙江龙岩段水体中PAHs污染较严重,且具有明显的季节分布特征。夏、秋、冬季九龙江龙岩段水体水中均以3~4环PAHs为主。污染来源分析表明,河水中PAHs主要来源于燃烧源。  相似文献   

3.
The objectives of this study were to investigate the levels, dispersion patterns, seasonal variation, and sources of 16 priority polycyclic aromatic hydrocarbons (16 EPA-PAHs) in the Hun River of Liaoning Province, China. Samples of surface water were collected from upstream to downstream locations, and also from the main tributaries of the Hun River in dry period, flood period, and level period, respectively. After appropriate preparation, all samples were analyzed for 16 EPA-PAHs. Total PAHs concentrations varied from 124.55 to 439.27 ng l?1 in surface water in dry period, 1,615.75 to 5,270.04 ng l?1 in flood period, and 2,247.42 to 7,767.9 ng l?1 in level period. The 16 EPA-PAHs concentrations were significantly increased in the order of level period > flood period > dry period. The composition pattern of PAHs in surface water was dominated by low molecular weight PAHs, in particular two- to three-ring PAHs. In addition, two-ring PAH accounted for 39.33 to 88.27 % of the total PAHs in level period. Low molecular weight PAHs predomination together with higher levels of PAHs in flood and level period suggested a relatively recent local source of PAHs. Special PAHs ratios such as phenanthrene/anthracene and fluoranthene/pyrene indicated that under dry weather season conditions, the PAHs found in surface water were primarily from petrogenic source, while under wet weather season conditions they were from mixed source of both petrogenic inputs and combustion sources. The comparison of PAHs contamination among different types of areas in China suggested that atmospheric depositions might be the most important approaches of PAHs into water system. Although the Hun River exists low PAHs ecological risk now, potential toxic effects will be existed in the future especially in flood and level period.  相似文献   

4.
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector in 105 topsoil samples from an industrial area around Bohai Bay, Tianjin in the North of China. Results demonstrated that concentrations of PAHs in 104 soil samples from this area ranged from 68.7 to 5,590 ng g???1 dry weight with a mean of ∑16PAHs 814 ± 813 ng g???1, which suggests that there exists mid to high levels of PAH contamination. The concentration of ∑16PAHs in one soil sample from Tianjin Port was exceptionally high (48,700 ng g???1). Ninety-three of the 105 soil samples were considered to be contaminated with PAHs (>200 ng g???1), and 25 were heavily polluted (>1,000 ng g???1). The sites with high PAHs concentration are mainly distributed around chemical industry parks and near highways. Two low molecular weight PAHs, naphthalene and phenanthrene, were the dominant components in the soil samples, which accounted for 22.1% and 10.7% of the ∑16PAHs concentration, respectively. According to the observed molecular indices, house heating in winter, straw stalk combustion in open areas after harvest, and petroleum input were common sources of PAHs in this area, while factory discharge and vehicle exhaust were the major sources around chemical industrial parks and near highways. Biological processes were probably another main source of low molecular weight PAHs.  相似文献   

5.
A field campaign was conducted to measure and analyze 13 polycyclic aromatic hydrocarbons (PAHs) in six major zones in the city of Shanghai, P.R. China from August 2006 to April 2007. Ambient air samples were collected seasonally using passive air samplers, and gas chromatography–mass spectroscopy was used in this field campaign. The results showed that there was a sequence of 13 PAHs at Phen > FA > Pyr > Chr > Fl > An > BaA > BbFA > BghiP > IcdP > BkFA > BaP > DahA and the sum of these PAHs is 36.01 ± 10.85 ng/m3 in gas phase. FL, Phen, FA, Pyr, and Chr were the dominant PAHs in gas phase in the city. They contributed 90% of total PAHs in the gas phase. Proportion of measured PAHs with three, four, five, and six rings to total PAHs was 53%, 42%, 3%, and 2%, respectively. The highest concentration of ΣPAHs (the sum of 13 PAHs) occurred in the wintertime and the lowest was in the summer. This investigation suggested that traffic, wood combustion, and metal scrap burn emissions were dominant sources of the concentrations of PAHs in six city zones compared with coal burning and industry emissions. Further, the traffic emission sources of PAHs in the city were attributed mostly to gasoline-powered vehicles compared with diesel-powered vehicles. It was revealed that the seasonal changes in PAHs in the city depended on different source types. Metal scrap burn was found to be the major source of PAHs during the autumn, while the PAH levels in the atmosphere for winter and spring seasons were mainly influenced by wood and biomass combustion. Comparisons of PAHs among different city zones and with several other cities worldwide were also made and discussed.  相似文献   

6.
The seasonal variations of concentrations of PAHs in the soil and the air were measured in urban and rural region of Dalian, China in 2007. In soil, mean concentrations of all PAHs in summer were larger than those in winter, whereas the concentrations of heavier weight PAHs in winter were larger than those in summer. Winter/summer concentration ratios for individual PAHs (R(W/S)) increased with the increase of molecular weight of PAHs in soil, indicating that PAHs with high molecular weight were more easily deposited to soil in winter than summer. In air, mean concentrations of all PAHs in winter were larger than those in summer. In comparison with the R(W/S) in soil, all the values of R(W/S) in air were larger than one indicating that the entire individual PAH concentrations in winter were larger than those in summer. The average concentration composition for each PAH compound in soil and air samples was determined and the seasonal change of PAH profile was very small. It was suggested that PAHs in soils and air had the same or similar sources both in winter and summer. The approach to the soil-air equilibrium was assessed by calculating fugacity quotients between soil and air using the soil and air concentrations. The calculated soil-air fugacity quotients indicated that soil acted as a secondary source to the atmosphere for all lighter weight PAHs (two-three rings) and it will continue to be a sink for heavier weight PAHs (five-six rings) in the Dalian environment, both in winter and summer. Medium weight PAHs (four-five rings) were close to the soil-air equilibrium and the tendency shifted between soil and air when season or function region changed. The fugacity quotients of PAHs in summer (mean temperature 298 K) were larger than those in winter (mean temperature 273 K), indicating a higher tendency in summer than winter for PAHs to move from soil to air. The variation of ambient conditions such as temperature, rainfall, etc. can influence the movement of PAHs between soil and air. Most of the fugacity quotients of PAHs for the urban sites were larger than that for the rural site both in winter and summer. This phenomenon may be related with that the temperatures in urban sites were higher than those in the rural site because of the urban heat island effect.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) were measured in surface sediments and dated core sediments from the Nansi Lake of China to investigate the spatial and temporal distribution characteristics. The concentrations of 16 kinds priority PAH compounds were determined by GC-MS method. And 210Pb isotope dating method was used to determine the chronological age of the sediment as well as the deposition rate. The results indicated that the total PAHs concentration ranges in surface and core sediment samples were 160 ~32,600 and 137 ~ 693 ng/g (dry wt.), respectively. The sediment rate and the average mass sedimentation were calculated to be 0.330 cm·year???1 and 0.237 g·cm???2·yr???1 and the sediment time of the collected core sample ranged from 1899 to 2000. The peak of PAH concentrations came at recent years. The source analysis showed PAHs mainly came from the contamination of low temperature pyrogenic processes, such as coal combustion. The PAHs concentrations were lower than ERL and LEL values for most collected samples. However, in several surface sediment samples especially in estuary sites, the PAHs concentrations were not only higher than ERL and LEL values, but also higher than ERM values.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

9.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.  相似文献   

10.
Ambient gas and particle phase samples were collected during two sampling periods from a residential area of an industrialized city, Kocaeli, Turkey. The sampling occurred during winter months when structures were being heated, and summer months when structures were not being heated. Σ(13)PAH (gas + particle) concentrations ranged between 6.2 ng m(-3) (DahA) and 98.6 ng m(-3) (Phe) in the heating (winter) period and 3.0 ng m(-3) (BaA) and 35.1 ng m(-3) (Phe) in the non-heating (summer) period. Phe, Flt and Pyr were found to be at high concentrations in both sampling periods. Winter time to summer time concentration ratios for individual ambient PAH concentration ratios ranged between 1.2 (DahA) and 17.5 (Flu), indicating the effect of the emissions from residential heating on measured concentrations of PAHs, but great industrial plants and the only incinerator facility of Turkey are other important pollution sources around the city. Temperature dependence of gas phase PAHs was investigated using the Clausius-Clapeyron equation. A high slope obtained (5069.7) indicated the effect of the local sources on measured gas phase PAHs. Correlation of the supercooled vapor pressure (P) with the gas particle partitioning coefficient (K(p)) and particle phase fraction was also evaluated. The relationship between the meteorological parameters and individual PAH (gas + particle) concentrations was investigated further by multiple linear regression analysis. It was found that the temperature had a significant effect on all of the measured PAH concentrations, while the effects of the wind speed and direction were not significant on the individual PAHs. On the other hand, PAH concentrations showed a strong linear relationship with the ventilation coefficient (VC) which showed the influence of local sources on measured PAHs. Benzo[a]pyrene toxic equivalent (BaP(eq.)) concentrations were used for health risk assessment purposes. The winter period risk level (2.92 × 10(-3)) due to the respiratory exposure to PAHs was found to be almost 3 times higher than in the summer period (1.15 × 10(-3)).  相似文献   

11.
南京市大气颗粒物中多环芳烃变化特征   总被引:4,自引:2,他引:2  
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

12.
To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in sediments from the Bizerte Lagoon (northern Tunisia), 18 surface sediment samples were collected in March 2011 and analyzed for 14 US Environmental Protection Agency priority PAHs by high-performance liquid chromatography. The total concentrations of the 14 PAHs (ΣPAHs) ranged from 16.9 to 394.1 ng g?1 dry weight (dw) with a mean concentration of 85.5 ng g?1 dw. Compared with other lagoons, coasts, and bays in the world, the concentrations of PAHs in surface sediments of the Bizerte Lagoon are low to moderate. The PAHs’ composition pattern was dominated by the presence of four-ring PAHs (45.8 %) followed by five-ring (26.8 %) and three-ring PAHs (12.7 %). The PAH source analysis suggested that the main origin of PAHs in the sediments of the lagoon was mainly from pyrolytic sources. According to the numerical effect-based sediment quality guidelines of the USA, the levels of PAHs in the Bizerte Lagoon should not exert adverse biological effects. The total benzo[a]pyrene toxicity equivalent values calculated for the samples varied from 3.1 to 53.7 ng g?1 dw with an average of 10.6 ng g?1 dw.  相似文献   

13.
One hundred and fourteen surface sediments were collected from the Maozhou River Watershed in Shenzhen, China from December 2009 to January 2010. Three individual chlorinated polycyclic aromatic hydrocarbons (ClPAHs), six individual brominated polycyclic aromatic hydrocarbons (BrPAHs), and five corresponding parent polycyclic aromatic hydrocarbons (PAHs) were determined. The concentration of 9-chlorophenanthrene was the highest ranging from 0.51-289 ng g(-1) (average, 16.5 ng g(-1)). For BrPAHs, the concentration of 2-bromofluorene was the highest ranging from 0.31-266 ng g(-1) (average, 35.3 ng g(-1)). No correlation was observed between the concentrations of ClPAHs and parent PAHs in surface sediments. In addition, there was no correlation between 1-bromopyrene, 7-bromobenz(a)anthracene and 9,10-dibromoanthracene, and corresponding parent PAHs. However, a significant correlation was found between 9-bromophenanthrene and phenanthrene (p < 0.01), between 9-bromoanthracene and anthracene (p < 0.05), and between 2-bromofluorene and fluorene (p < 0.05). Six fly ash samples collected from one of the municipal domestic waste incineration plants in Shenzhen were also analyzed for source identification. The concentration of 7-bromobenz(a)anthracene was the highest, ranging from 3.21-4.08 ng g(-1). In addition, 2-bromofluorene was not detected in all the fly ash samples. No correlation was found between the concentrations of Cl-/BrPAHs and corresponding parent PAHs in fly ashes. We also examined the relationship between the levels of Cl-/BrPAHs in surface sediments and the urbanization process. Our results suggested the levels of individual Cl-/BrPAHs congeners presented a similar increasing trend with the increasing urbanization level.  相似文献   

14.
Fifty-eight sediment samples were collected in 2009 from the bottom of river mouths near Kaohsiung Harbor (Taiwan) and the harbor channel for the analyses of polycyclic aromatic hydrocarbons (PAHs) using gas chromatography-mass spectrometry (GC-MS). Concentrations of total PAHs varied from 39 to 30,521 ng g(-1) (dry weight); samples collected from the mouths of Love River, Canon River, Jen-Gen River, and Salt River showed the highest PAHs concentrations. This indicates that the major sources of sediment PAHs come from those polluted urban rivers and the harbor channel. In samples collected from the Salt River mouth, approximately 43% of the PAHs are identified as PAHs with 2 or 3 rings. However, samples collected from other locations contain predominantly PAHs with 4 rings (32 to 42%) or 5 and 6 rings (36 to 44%). Emissions from traffic-related sources and waste incineration contribute to the majority of PAHs found in most channel and river mouth sediments. However, coal/oil combustion is the main cause of high concentrations of PAHs observed in the Salt River mouth sediments. Principal component analyses with multivariate linear regression (PCA/MLR) have been used to further quantify the source contributions, and the results show that the contributions of coal/oil combustion, traffic-related and waste incineration are 37%, 33% and 30%, respectively.  相似文献   

15.
商丘市包河表层沉积物中多环芳烃污染初步研究   总被引:2,自引:0,他引:2       下载免费PDF全文
对包河表层沉积物6个位点的样品中多环芳烃进行了研究,分析其含量、分布特征及其生态风险评价,并结合采样点的情况对其进行源解析,共检测出6种多环芳烃,含量范围为0~9. 50 ng/g。按城市分布情况来看,工业厂附近多环芳烃的含量相对较高。比值法和因子分析法结果显示,多环芳烃污染主要来源于煤炭的燃烧,目前包河表层沉积物中多环芳烃含量处于低风险水平,尚未对生物造成显著的负面影响.  相似文献   

16.
天津城郊土壤中PAHs含量特征及来源解析   总被引:4,自引:1,他引:3  
以天津市郊环城四区为研究对象,系统采集了环城四区95个表层土壤样品,利用高效液相色谱仪对16种PAHs进行分析测定,结果表明,西青、东丽、津南和北辰土壤中16种PAHs的总量范围分别为62.6~1 994.9、36.1~4 074.7、20.1~2 502.5、22.1~707.7μg/kg;平均含量分别为445.8、841.8、509.5、242.5μg/kg。四区中都以高环多环芳烃为主,西青、东丽、北辰和津南高环多环芳烃分别占多环芳烃总比例的45.4%、42.2%、38.8%和38.7%。空间分析的结果表明,靠近天津市市区样点土壤中多环芳烃的含量要明显高于远离市区土壤中多环芳烃的含量。利用环数PAHs的相对丰度和比值法对天津市郊环城四区土壤中多环芳烃的污染来源进行了解析,研究区土壤监测样点的PAHs主要来自燃烧源,少部分来自石油类来源或几种污染源的共同复合累加的作用。  相似文献   

17.
The concentrations of total polycyclic aromatic hydrocarbons (?PAHs) and 22 individual PAH compounds in 42 surface sediments collected from the mangrove forest of Qeshm Island and Khamir Port (Persian Gulf) were analyzed. ?PAHs concentrations ranged from 259 to 5,376 ng?g?1 dry weight with mean and median values of 1,585 and 1,146 ng?g?1, respectively. The mangrove sediments had higher percentages of lower molecular weight PAHs and the PAH profiles were dominated by naphthalene. Ratio values of specific PAH compounds were calculated to evaluate the possible source of PAH contamination. This ratios suggesting that the mangrove sediments have a petrogenic input of PAHs. Sediment quality guidelines were conducted to assess the toxicity of PAH compounds. The levels of total PAHs at all of stations except one station, namely Q6, were below the effects range low. Also, concentrations of naphthalene in some stations exceeded the effects range median.  相似文献   

18.
Particle-bound PAHs were measured at three sites in southeastern Spain (an urban background location, a suburban-industrial site in the vicinity of two cement plants and a rural area) in order to investigate the influence of the type of location on PAH concentrations. A clear influence of cement production on particulate PAH levels could not be established since for the urban background and suburban-industrial sites the average concentrations of total PAHs in the PM2.5 fraction were very similar (1.085 and 1.151 ng m(-3), respectively), with benzo[b+k]fluoranthene and chrysene as the predominant compounds. Diagnostic ratios, used to identify PAH emission sources, pointed to traffic as the main source of particulate PAH at both locations. As expected, PAH levels at the rural site were significantly lower (0.408 ng m(-3) in the PM10 fraction) due to increasing distance from the emission sources. PAH seasonal variations at the urban background and suburban-industrial sites were the same as reported in many previous studies. Average winter to summer ratios for total PAHs were 4.4 and 4.9 for the urban background and industrial sites, in that order. This seasonal cycle could be partially explained by the higher temperature and solar radiation during summer enhancing PAH evaporation from the particulate phase and PAH photochemical degradation, respectively. The study of PAH distribution between the fine and coarse fraction at the urban site revealed that on average around 80% of total PAHs were associated with fine particles.  相似文献   

19.
东北地区城市大气颗粒物中多环芳烃的污染特征   总被引:10,自引:5,他引:5  
2008年4月至2009年1月期间,在东北三省(辽宁、吉林、黑龙江)设立30个观测点位,研究了东北城市大气颗粒物中PAHs的浓度水平、分布及来源.结果表明,不同季节14种PAHs总浓度的变化范围是16.3 ~712.1 ng/m3,呈冬季高、夏季低的季节变化特征;PAHs组成以4~5环化合物为主,3~4环化合物受温度的影响较大,表现出较强的季节波动;8个城市中抚顺和吉林PAHs污染最重,城市不同功能区中以工业区污染较重;燃煤和机动车尾气是区域PAHs的主要来源.  相似文献   

20.
Our previous study indicated that the current level of polycyclic aromatic hydrocarbons (PAHs) in Shenzhen soil is in the low-end of world soil PAH pollution. In this study, the fate of PAHs in the soil of Shenzhen was investigated. The mass inventories of Σ(27)PAHs and Σ(15)PAHs (defined as the sum of the 27 or 15 PAH compounds sought) in topsoil of Shenzhen were ~204 and ~152 metric tons, respectively. Fate estimation of Σ(15)PAHs shows that air-soil gaseous exchange is the primary environmental process with ~10,076 kg/year diffusing from soil to air. Rain washing (~1131 kg/year from air to soil) is the most important input pathway followed by wet (~17 kg/year) and dry deposition (~8 kg/year) to soils in Shenzhen. The transport of Σ(15)PAHs by soil erosion is a crucial loss process for soil PAHs in Shenzhen (1918 kg/year for water runoff and 657 kg/year for solid runoff from soil). Moreover, degradation is not ignorable at present (95 kg/year). Comparison of inventory and residue (defined as Σ(15)PAHs left in topsoils after all environmental loss processes) suggested that input and loss of high molecular weight PAHs for Shenzhen's soil reached apparent equilibrium. Soil PAH pollution in Shenzhen will stay in a quasi-steady state for a long period and the natural environmental processes can not significantly reduce the pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号