首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, 74 soil samples collected from the Pearl River Delta were analyzed for polycyclic aromatic hydrocarbons (PAHs). The PAH mixture in the soils is mainly of low molecular weight compounds, with naphthalene (21.4%) and phenanthrene (21.8%) being dominant. Soil PAH levels from the Pearl River Delta are relatively low (28?C711 ng/g, averaged 192 ng/g) compared to those from urban soils in temperate regions. The mean concentration of ??PAHs generally decrease with increasing distance from the city center, with ??PAHs of paddy soils > crop soil > natural soil. PAHs in the air were measured during a year-round sampling campaign using semipermeable membrane devices, and the transfer of chemicals between the soil and air compartments were estimated. Soil?Cair fugacity quotient calculations showed a highly uncertain equilibrium position of PAHs, with net volatilization of naphthalene and fluorene, whereas net deposition of phenanthrene, fluoranthene, and pyrene, indicating a capacity for the air to supply the soil with more substances.  相似文献   

2.
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19–97% of various PAHs, vehicular emissions 0–70%, diesel based sources 0–81% and other miscellaneous sources 0–20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R 2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.  相似文献   

3.
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in Densu River Basin in Ghana were measured using gas chromatograph. Surface water samples were collected from nine stations, namely, Potroase, Koforidua Intake, Suhyien, Mangoase, Asuboi, Nsawam Bridge, Afuaman, Ashalaga, and Weija Intake in the Densu Basin. Total PAH concentrations varied from 13.0 to 80.0 ??g/mL in the Densu River, with a mean value of 37.1 ??g/mL. The two- to three-ring PAHs (low-molecular-weight PAHs) were found to be dominant in the Densu River Basin. Total PAH concentrations showed the following pattern: Koforidua Intake (80.0 ??g/mL) > Asuboi (50.8 ??g/mL) > Afuaman (47.9 ??g/mL) > Weija Intake (45.0 ??g/mL) > Suhyien (27.6 ??g/mL) > Nsawam (23.5 ??g/mL) > Ashalaja (22.9 ??g/mL) > Potroase (23.3 ??g/mL) > Mangoase (13.0 ??g/mL). According to the Agency for Toxic Substances and Disease Registry (ATSDR), background levels of PAHs in drinking water supplies in the USA range from 0.004 to 0.024 ??g/mL. PAH levels from all sites exceeded the range set by ATSDR. B[a]P contributed the highest carcinogenic exposure equivalent (0.3 ??g/mL), followed by B[a]A (0.132 ??g/mL) and B[b]F (0.08 ??g/mL), contributing 52.6%, 23.2%, and 4.6%, respectively, of the total carcinogenicity of surface water PAH in the Densu River Basin. The carcinogenic potency was estimated to be 0.57 ??g/mL. The presence of PAHs was an indication of the water sources being contaminated, with potential health implications.  相似文献   

4.
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector in 105 topsoil samples from an industrial area around Bohai Bay, Tianjin in the North of China. Results demonstrated that concentrations of PAHs in 104 soil samples from this area ranged from 68.7 to 5,590 ng g???1 dry weight with a mean of ∑16PAHs 814 ± 813 ng g???1, which suggests that there exists mid to high levels of PAH contamination. The concentration of ∑16PAHs in one soil sample from Tianjin Port was exceptionally high (48,700 ng g???1). Ninety-three of the 105 soil samples were considered to be contaminated with PAHs (>200 ng g???1), and 25 were heavily polluted (>1,000 ng g???1). The sites with high PAHs concentration are mainly distributed around chemical industry parks and near highways. Two low molecular weight PAHs, naphthalene and phenanthrene, were the dominant components in the soil samples, which accounted for 22.1% and 10.7% of the ∑16PAHs concentration, respectively. According to the observed molecular indices, house heating in winter, straw stalk combustion in open areas after harvest, and petroleum input were common sources of PAHs in this area, while factory discharge and vehicle exhaust were the major sources around chemical industrial parks and near highways. Biological processes were probably another main source of low molecular weight PAHs.  相似文献   

5.
To estimate the severity of polycyclic aromatic hydrocarbon (PAH) contamination in the upper sediment of the Beijiang River, 42 sediment samples were analyzed for the presence of 16 key PAHs using gas chromatography–mass spectrometry. The concentrations of PAH in the sediment ranged from 44 to 8,921 ng g?1 dry weight. The four- to six-ring PAHs, contributing >50 % to PAHs in 34 of the 42 sites, were the dominant species. Based on a principal component analysis, combined with multivariate linear regression, it became clear that the most important contributors of PAH were fossil fuel combustion (48 %), diesel emissions plus oil spillage (33 %), and coke combustion (19 %). The surface sediments of Beijiang River were grossly contaminated by PAHs mainly derived from combustion.  相似文献   

6.
Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in 25 surface sediments in three cities (Nantong, Wuxi, and Suzhou) in the Yangtze River Delta, eastern China were measured. The mean concentrations were 378, 45.8, 1.98, 4,002 ng/g for PBDEs, OCPs, PCBs, and PAHs, respectively. Their levels in the sediments in the three cities were generally consistent with the city industrialization. PBDEs and OCPs were markedly dominated by deca-BDE (>90 %) and DDTs (>70 %). A principle component analysis of the analytes identified three major factors suggesting different sources of the contaminants in the sediments. PBDEs and the organic carbon in the sediments have common sources from industrial activities; whereas OCPs and PCBs, correlated with the second factor, were mainly from historical sources. The third factor with loadings of PAHs is indicative of various combustion sources. Ecological risk assessment indicated that the potential highest risk is from DDTs, for which 22 sites exceed the effects range low (ERL) values and three sites exceed the effects range median (ERM) value.  相似文献   

7.
The objectives of this study were to investigate the levels, dispersion patterns, seasonal variation, and sources of 16 priority polycyclic aromatic hydrocarbons (16 EPA-PAHs) in the Hun River of Liaoning Province, China. Samples of surface water were collected from upstream to downstream locations, and also from the main tributaries of the Hun River in dry period, flood period, and level period, respectively. After appropriate preparation, all samples were analyzed for 16 EPA-PAHs. Total PAHs concentrations varied from 124.55 to 439.27 ng l?1 in surface water in dry period, 1,615.75 to 5,270.04 ng l?1 in flood period, and 2,247.42 to 7,767.9 ng l?1 in level period. The 16 EPA-PAHs concentrations were significantly increased in the order of level period > flood period > dry period. The composition pattern of PAHs in surface water was dominated by low molecular weight PAHs, in particular two- to three-ring PAHs. In addition, two-ring PAH accounted for 39.33 to 88.27 % of the total PAHs in level period. Low molecular weight PAHs predomination together with higher levels of PAHs in flood and level period suggested a relatively recent local source of PAHs. Special PAHs ratios such as phenanthrene/anthracene and fluoranthene/pyrene indicated that under dry weather season conditions, the PAHs found in surface water were primarily from petrogenic source, while under wet weather season conditions they were from mixed source of both petrogenic inputs and combustion sources. The comparison of PAHs contamination among different types of areas in China suggested that atmospheric depositions might be the most important approaches of PAHs into water system. Although the Hun River exists low PAHs ecological risk now, potential toxic effects will be existed in the future especially in flood and level period.  相似文献   

8.
Urban road dust samples were collected from different land use areas in Suzhou, Wuxi, and Nantong, Yangtze River Delta, China. The dust samples were analyzed for the levels and compositional profiles of deca-polybrominated diphenyl ethers (Deca-BDE), 22 organochlorine pesticides (OCPs), and 16 polycyclic aromatic hydrocarbons (PAHs). The levels of BDE-209, ∑OCPs, and ∑PAHs in samples ranged from 4.01–1,439 μg/kg, 3.15–615 μg/kg, and 2.24–58.2 mg/kg, respectively. PAHs were the predominant target compounds in road dust samples, comprising on average 97.7 % of total compounds. The spatial gradient of the pollutants (commercial/residential area> industrial area > urban park concentrations) was observed in the present study. The results indicated that the levels of BDE-209, OCPs, and PAHs observed in road dust were usually linked to anthropogenic activities in the urban environment. In addition, there might be a reflection of current usage or emissions of OCPs in urban environment.  相似文献   

9.
Spatial and seasonal distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs), identified as priority pollutants by the US Environmental Protection Agency, were investigated in the surface water of the Taizi River in Liaoning Province, northeast of China. Samples were collected from the mainstream, and tributaries of the Taizi River in dry, wet, and normal seasons. Five important industrial point sources were also monitored. The total PAH concentrations ranged from 454.5 to 1,379.7 ng l?1 in the dry season, 1,801.6 to 5,868.9 ng l?1 in the wet season, and 367.0 to 5,794.5 ng l?1 in the normal season. The total PAH concentrations were significantly increased in the order of wet season > normal season > dry season. The profile of PAHs in the surface water samples was dominated by low molecular weight PAHs particularly with two- and three-ring components in the three seasons, suggesting that the PAHs were from a relatively recent local source. Source identification inferred that the PAHs in the surface water of the Taizi River came from both petrogenic inputs and pyrogenic sources.  相似文献   

10.
Ambient gas and particle phase samples were collected during two sampling periods from a residential area of an industrialized city, Kocaeli, Turkey. The sampling occurred during winter months when structures were being heated, and summer months when structures were not being heated. Σ(13)PAH (gas + particle) concentrations ranged between 6.2 ng m(-3) (DahA) and 98.6 ng m(-3) (Phe) in the heating (winter) period and 3.0 ng m(-3) (BaA) and 35.1 ng m(-3) (Phe) in the non-heating (summer) period. Phe, Flt and Pyr were found to be at high concentrations in both sampling periods. Winter time to summer time concentration ratios for individual ambient PAH concentration ratios ranged between 1.2 (DahA) and 17.5 (Flu), indicating the effect of the emissions from residential heating on measured concentrations of PAHs, but great industrial plants and the only incinerator facility of Turkey are other important pollution sources around the city. Temperature dependence of gas phase PAHs was investigated using the Clausius-Clapeyron equation. A high slope obtained (5069.7) indicated the effect of the local sources on measured gas phase PAHs. Correlation of the supercooled vapor pressure (P) with the gas particle partitioning coefficient (K(p)) and particle phase fraction was also evaluated. The relationship between the meteorological parameters and individual PAH (gas + particle) concentrations was investigated further by multiple linear regression analysis. It was found that the temperature had a significant effect on all of the measured PAH concentrations, while the effects of the wind speed and direction were not significant on the individual PAHs. On the other hand, PAH concentrations showed a strong linear relationship with the ventilation coefficient (VC) which showed the influence of local sources on measured PAHs. Benzo[a]pyrene toxic equivalent (BaP(eq.)) concentrations were used for health risk assessment purposes. The winter period risk level (2.92 × 10(-3)) due to the respiratory exposure to PAHs was found to be almost 3 times higher than in the summer period (1.15 × 10(-3)).  相似文献   

11.
This research was carried out in the cities of Zonguldak and Eregli, which have been characterized as urban and industrial environments of the Western Black Sea Region, Turkey, in order to assess the contamination of polycyclic aromatic hydrocarbons (PAHs) using mosses as biomonitors. The methodology involved the collection of moss samples (Hypnum cupressiforme), ultrasonic extraction with dichloromethane, cleanup using silica gel and analysis by liquid chromatography with ultraviolet detection. The total PAH concentrations ranged from 78.1 to 1693.5 ng g?1 in Zonguldak and from 15.2 to 275.1 ng g?1 in Eregli. The total PAH concentration in Eregli was about six times lower than that in Zonguldak, revealing the importance of switching from coal to natural gas in residential heating. The diagnostic ratios and the correlation analysis have indicated that coal combustion and traffic emissions were the major PAH sources at both sites. The contour maps were constructed for the determination of spatial distributions of total PAHs, and it was shown for Zonguldak as well as for Eregli that the PAH pollution was much more predominant in highly populated regions. Moving away from the city centres, a gradual decrease in PAH pollution rates was observed.  相似文献   

12.
As a heavy industrial city, Liuzhou has been facing a serious pollution problem. It is necessary to take steps to control and prevent environmental pollution wherever possible. Surface soil samples were collected from four communities in Liuzhou City, to determine the concentrations, distributions, sources, and toxicity potential of polycyclic aromatic hydrocarbons (PAHs) present. The mean concentrations of total PAHs in the surface soil are 756.43 ng/g for the heavy industrial area, 605.06 ng/g for the industrial area, 481.24 ng/g for the commercial–cum–residential area, and 49.93 ng/g for the rural area. Both the isomer ratio and principal component analyses for the PAHs prove that these pollutants originate mainly from coal, diesel, gasoline, and natural gas combustion. The pollution hierarchies and toxic equivalency factor of BaP prove that the city is subject to heavy pollution caused by industry, transportation, and daily human activities.  相似文献   

13.
A microwave-assisted extraction (MAE) method was verified and applied for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples. Soxhlet extraction was used as the reference method. The optimum MAE was carried out with 20 mL of hexane/acetone (1:1, v/v) mixture in a 1-g sample at 250 W for 20 min. Soxhlet extraction was carried out with 250 mL of dichloromethane:hexane (1:1, v/v) mixture in a 15-g sample for 24 h in a water bath maintained at 60 °C. The collected extracts were both cleaned up, reduced to 1 mL under nitrogen and then injected into an HPLC fluorescence. To increase the sample throughput, simultaneous MAE was performed. The obtained percentage recoveries ranged from 61 to 93 and 88–98 for MAE and SE, respectively. The optimised MAE method was validated using certified reference material. It was then applied to real sediment samples from in and around the greater Johannesburg area. The sediments from Jukskei River were found to be the most polluted while Hartbeespoort Dam sediments were found to be least polluted. The overall order of concentrations for the studied PAHs per site was as follows: Jukskei River?>?Kempton Park?>?Centurion Dams?>?Natalspruit River (PIT)?>?Hartbeespoort Dam.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) were analysed in 39 soil samples (0–10 cm upper layer) collected in Belgrade, the capital of Serbia. The sampling sites were randomly selected from urban, urban/recreational and rural areas; the samples were collected in April and December 2003 and July and October 2004. The sum of the 16 PAHs corresponding to the recreational zone (298 μg/kg) was close to the urban zone (375 μg/kg). Mean soil ΣPAH concentration from rural areas was 18 μg/kg dry weight. Comparing to values observed in the urbanized locations around the world, the overall levels of PAHs in this study are low. The PAH ratios obtained pointed to a domination of pyrogenically formed PAHs in the examined soils. The dominant PAHs in soil samples in urban zones were fluoranthene, benz[a]anthracene, phenanthrene and pyrene, mostly emitted from noncatalyst vehicles which are still in use in Serbia. The total carcinogenic potency for each sampling site was calculated. Regardless of the used carcinogenic activity factors, carcinogenic potency of 7 sites were 3–9 times higher than the reference ones indicating the increased carcinogenic burden of soils from these sites.  相似文献   

15.
In the study reported here semipermeable membrane devices (SPMDs) were used to sample 28 PAHs and 19 PCBs in the gas phase in 15 single-family houses located in an area where domestic wood burning is widespread. Eight of the households used wood burning appliances whereas the others used other systems for residential heating. Most of the studied compounds were found in the houses: the PAHs at levels that were similar to or slightly higher than published SPMD-sampled levels for background or urban sites in Sweden, and the PCBs at levels that were somewhat lower than those recently found in both indoor and outdoor urban locations. A principal component analysis revealed that wood-burning heating systems may contribute to PAHs in indoor air. The sources may be emissions indoors or penetration from outdoors. The convenience of SPMD technology facilitates its use for semi-quantitative screening and monitoring of various persistent organic compounds indoors in dwellings and working environments.  相似文献   

16.
A preliminary study to determine the profile of PAHs in the exhaust of diesel vehicles plying on Delhi roads was conducted. Two different types of diesel vehicles (buses and trucks) with different age groups were selected for sampling purpose. The concentration of Total PAHs (12PAHs) was found to be 50.76 ± 6.62 and 57.72 ± 4.15 mg/g in the exhaust of buses and trucks, respectively. The levels of PAHs were found to be high in trucks as compared to that of buses. The total PAHs concentration in the present study was found to be higher as compared to other studies. Such a high concentration could be attributed to different parameters like the age of the vehicles, driving conditions, the fuel quality and the emission standards.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

18.
Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m???3, respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.  相似文献   

19.
A preliminary study to determine the profile of PAHs in the exhaust of gasoline vehicles in Delhi was conducted. Three different types of vehicles (cars, autorickshaws and scooters) were selected with different age groups for sampling purpose. The concentration of Total PAHs (Σ12PAHs) was found to be 27.27 ± 2.27, 28.61 ± 3.70 and 29.81 ± 3.57 mg/g in the exhaust of cars, auto- rickshaws (three wheelers) and two wheelers, respectively. The levels of PAHs were found to be high in scooter exhaust as compared to that of cars and autorickshaws. The total PAHs concentration in the present study was found to be higher as compared to other studies. Such a high concentration could be attributed to different parameters like the age of the vehicles, driving conditions, the fuel quality and the emission standards.  相似文献   

20.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号