首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O3 under beech and spruce, and was related to O3-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O3 on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O3 regime. δ13C signature of newly formed fine-roots was consistent with the differing gs of beech and spruce, and indicated stomatal limitation by O3 in beech and by drought in spruce. Our study showed that drought can override the stimulating O3 effects on fine-root dynamics and soil respiration in mature beech and spruce forests.  相似文献   

2.
An attempt has been made to elucidate the effects of soil properties on arsenate adsorption by modeling the relationships between adsorption capacity and the properties of 16 Chinese soils. The model produced was validated against three Australian and three American soils. The results showed that nearly 93.8% of the variability in arsenate adsorption on the low-energy surface could be described by citrate-dithionite extractable Fe (Fe(CD)), clay content, organic matter content (OM) and dissolved organic carbon (DOC); nearly 87.6% of the variability in arsenate adsorption on the high-energy surface could be described by Fe(CD), DOC and total arsenic in soils. Fe(CD) exhibited the most important positive influence on arsenate adsorption. Oxalate extractable Al (Al(OX)), citrate-dithionite extractable Al (Al(CD)), extractable P and soil pH appeared relatively unimportant for adsorption of arsenate by soils.  相似文献   

3.
Factors influencing nitrogen retention in forest soils   总被引:4,自引:0,他引:4  
Leaching and agitation experiments with soil organic horizons showed that nitrogen pollutant concentration, temperature, contact time and neutral soluble salts influence the fate of enhanced ammonium and nitrate inputs to the soil and the leaching of inorganic and organic nitrogen. Soils investigated included L, F and H horizons under Sitka spruce, the L and F horizons under Scots pine and Japanese larch and L and O horizons under Calluna. Effects attributable to species were also observed. The results are discussed in the light of their relevance to being incorporated into models of the effects of excess nitrogen inputs to forest soils, and in view of current concern that forest ecosystems in areas of high nitrogen deposition may become nitrogen saturated.  相似文献   

4.
The distribution of the elements Cd, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn has been examined in the horizons of soils under aged Sitka spruce (Picea sitchensis (Bong.) Carr.) stands at a plantation in Northern England. The stands are under first-generation cultivation and are up to 33 years old. Cadmium, Mn, Pb and Zn concentrations were consistently higher in the organic layers than in the underlying mineral soil. This contrasted with the situation for Sr and V. Cadmium, Pb and Zn all showed an increase in concentration in the L + F horizons with stand age and a corresponding increase in the difference between L + F horizon concentrations. Soil pH declined with increasing stand age. Cadmium, Cr, Pb and Zn were all present at higher concentrations in the F horizon than in any other, while Cu and Ni were relatively constant through all the horizons studied. For all nine elements, the H horizon was the largest store of the three organic layers. Calculated rates of accumulation of Cd, Pb and Zn in the L + F horizons gave good agreement with estimated regional atmospheric deposition rates. In comparison to atmospheric deposition, biological mobilisation and deposition of Cd, Pb and Zn make a relatively minor contribution to the surface soil metal burden. Cadmium appeared to be the most readily leached of these three metals from the forest floor, although some transfer of atmospherically-derived Pb to the H+ soil horizons was indicated.  相似文献   

5.
Heavy metal pollution and forest health in the Ukrainian Carpathians   总被引:2,自引:0,他引:2  
The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils.  相似文献   

6.
To monitor the level of soil acidification in the county of V?rmland in the middle west of Sweden 180 podzolic forest soils were investigated. Soil solutions from four horizons were obtained by centrifugation and the soil was sampled for a determination of the exchangeable pool by extraction. The concentrations of inorganic Al and its fraction of the total Al in solution were greater in the south of the county (up to 50%). The factors influencing the total Al and free inorganic Al3+ in the soil solutions were evaluated. Saturation indices (SI) for five different mineral phases were calculated but none implied equilibrium conditions. The relationships between pAl3+ and pH (in the pH range 4-6.2) gave slopes of about 1, which indicated that ion exchange/complexation reactions may be important for determining the Al3+ concentration in the B and C horizons. In the E horizon solutions complexation with soluble organic acids seemed to be the major factor which influenced the Al3+ activity. The influence of organic matter on Al solubility was supported by partial least square (PLS) regressions.  相似文献   

7.
The distribution pattern and fractionation of arsenic (As) in three soil profiles from tea (Camellia sinensis L.) gardens located in Karbi-Anglong (KA), Cachar (CA) and Karimganj (KG) districts in the state of Assam, India, were investigated depth-wise (0-10, 10-30, 30-60 and 60-100 cm). DTPA-extractable As was primarily restricted to surface horizons. Arsenic speciation study showed the presence of higher As(V) concentrations in the upper horizon and its gradual decrease with the increase in soil depths, following a decrease of Eh. As fractionation by sequential extraction in all the soil profiles showed that arsenic concentrations in the three most labile fractions (i.e., water-soluble, exchangeable and carbonate-bound fractions) were generally low. Most arsenic in soils was nominally associated with the organic and Fe-Mn oxide fractions, being extractable in oxidizing or reducing conditions. DTPA-extractable As (assumed to represent plant-available As) was found to be strongly correlated to the labile pool of As (i.e. the sum of the first three fractions). The statistical comparison of means (two-sample t-test) showed the presence of significant differences between the concentrations of As(III) and As(V) for different soil locations, depths and fractions. The risk assessment code (RAC) was found to be below the pollution level for all soils. The measurement of arsenic uptake by different parts of tea plants corroborated the hypothesis that roots act as a buffer and hold back contamination from the aerial parts.  相似文献   

8.
Herbicide leaching through soil into groundwater greatly depends upon sorption-desorption and degradation phenomena. Batch adsorption, desorption and degradation experiments were performed with acidic herbicide MCPA and three soil types collected from their respective soil horizons. MCPA was found to be weakly sorbed by the soils with Freundlich coefficient values ranging from 0.37 to 1.03 mg1−1/n kg−1 L1/n. It was shown that MCPA sorption positively correlated with soil organic carbon content, humic and fulvic acid carbon contents, and negatively with soil pH. The importance of soil organic matter in MCPA sorption by soils was also confirmed by performing sorption experiments after soil organic matter removal. MCPA sorption in these treated soils decreased by 37-100% compared to the original soils. A relatively large part of the sorbed MCPA was released from soils into aqueous solution after four successive desorption steps, although some hysteresis occurred during desorption of MCPA from all soils. Both sorption and desorption were depth-dependent, the A soil horizons exhibited higher retention capacity of the herbicide than B or C soil horizons. Generally, MCPA sorption decreased in the presence of phosphate and low molecular weight organic acids. Degradation of MCPA was faster in the A soil horizons than the corresponding B or C soil horizons with half-life values ranging from 4.9 to 9.6 d in topsoils and from 11.6 to 23.4 d in subsoils.  相似文献   

9.
The effects of air pollutants on soil were studied in Scots pine (Pinus sylvestris L.) forests near the boundary of Russia and Estonia. The study area is characterized by large amounts of acidic and basic pollutants, mainly sulphur dioxide (SO(2)) and calcium (Ca). Several variables were measured in different horizons of the podzolic soil polluted by emissions from local sources in areas of several thousands of square kilometers. Alkalinization dominates the processes in the soil, since sulphur is absorbed only in small quantities and Ca is much better absorbed. Ca content in humus horizon may rise even to 100 000 mg kg(-1) and the pH of originally very acidic soil may rise to 8.3. Total aluminum (Al) content was high in the heavily polluted plots, since emissions contain much Al. On the other hand, the exchangeable Al was very low in these alkaline sites. A larger quantity of exchangeable Al occurred farther from the pollutant sources, even though total Al in these plots was low. These plots had acidic soils in which Al is in exchangeable form. Due to the neutralizing effect of acidic and basic pollutants, forest damage in the study area was not as serious as might be supposed. Complicated pollutant situations must be taken into consideration when pollution-caused environmental protection measures are planned. It is not reasonable to reduce only SO(2) emissions, but necessary to lower the basic emissions at the same time.  相似文献   

10.
A set of physico-chemical properties of soils: soil pH, hydrolytic acidity, alkaline exchangeable cations, cation exchangeable capacity (CEC), and base saturation were studied in six-year long investigations of ecto-humus (organic layer) and endo-humus (Ah horizon) horizons of forest soils at the Kampinoski National Park in Poland. The soil properties determined in the present study showed differentiated values, depending on the actual horizon, the type and degree of soil development advancement, the genesis of the soil parent material (bedrock) as well as on the development of plant community prevailing in given site.  相似文献   

11.
To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota.  相似文献   

12.
Concentrations of Al, B, Ca, Cu, Fe, K, Mg, Mn, N, Na, P, S and Zn in the foliage of white fir (Abies alba), Norway spruce (Picea abies) and common beech (Fagus sylvatica) from 25 sites of the Carpathian Mts. forests (Czech Republic, Poland, Romania, Slovakia and Ukraine) are discussed in a context of their limit values. S/N ratio was different from optimum in 90% of localities when compared with the European limit values. Likewise we found increase of Fe and Cu concentrations compared with their background levels in 100% of locations. Mn concentrations were increased in 76% of localities. Mn mobilization values indicate the disturbance of physiological balance leading to the change of the ratio with Fe. SEM-investigation of foliage waxes from 25 sites in the Carpathian Mts. showed, that there is a statistically significant difference in mean wax quality. Epistomatal waxes were damaged as indicated by increased development of net and amorphous waxes. The most damaged stomata in spruce needles were from Yablunitsa, Synevir and Brenna; in fir needles from Stoliky, and in beech leaves from Malá Fatra, Morské Oko and Beregomet. Spruce needles in the Carpathian Mts. had more damaged stomata than fir needles and beech leaves. Spruce seems to be the most sensitive tree species to environmental stresses including air pollution in forests of the Carpathian Mountains. Foliage surfaces of three forest tree species contained Al, Si, Ca, Fe, Mg, K, Cl, Mn, Na, Ni and Ti in all studied localities. Presence of nutrition elements (Ca, Fe, Mg, K and Mn) on foliage surface hinders opening and closing stomata and it is not physiologically usable for tree species.  相似文献   

13.
The dynamics of aqueous aluminium in the ARINUS experimental watersheds at Schluchsee (granite) and Villingen (quartz sandstone), Black Forest (South-west Germany), were studied in order to detect the processes and factors controlling its mobility. Aluminium speciation was performed in the seepage of typical soils (podsol, acidic brown earth, stagnogley) at 3 depths (organic layer, 30 cm and 80 cm of the mineral soil) as well as in streamwater. The studies concentrated on the variability in time and space of inorganic monomeric Al (Ali), and organic monomeric Al (Alo). Furthermore, the equilibrium speciation model WATEQF was used to calculate the distribution of inorganic Al species. Natural soil properties and processes, such as DOC mobilization and excess mineralization of NO3(2-) and SO4(2-), appeared to have great influence and outweigh the deposition effects upon Al mobilization in these systems which receive only low to moderate loads of acidic deposition.  相似文献   

14.
To evaluate the changes in sulphur pools in response to acidic deposition, two studies were made-one in southwest Sweden where podzolic B horizons originally sampled in 1951 were resampled in 1989. At the Norrliden site, northern Sweden, sulphur pools in control plots were compared to plots that had been subjected to H(2)SO(4) application between 1971 and 1976. The results show that in southwest Sweden neither organic S nor extractable SO(4)(2-) increased significantly over the 38-year period, despite a decreasing pH and a high S deposition. At Norrliden, about 37% of the applied S was still remaining in the upper and central parts of the Bs horizon, most of which was inorganic sulphate. These contrasting results are explained by intrinsic differences in the soil organic carbon status between the sites-in southwest Sweden, organic carbon concentrations were high which inhibited SO(4)(2-) adsorption. Low organic carbon concentrations and high extractable Fe/Al concentrations promoted SO(4)(2-) adsorption and caused a low subsequent SO(4)(2-) desorption rate at the Norrliden site. The results suggest that sulphate adsorption may be an important mechanism which delays the response in soil chemistry to H(2)SO(4) deposition, provided that soil organic carbon concentrations are low. Organic S retention was not shown to be an important S retention mechanism in any of the sites studied.  相似文献   

15.
Characterization of water extractable organic matter in a deep soil profile   总被引:5,自引:0,他引:5  
The aim of this study was to identify qualitative and quantitative differences of water extractable organic matter (WEOM) isolated from each horizon along a deep soil profile and to evaluate any relationship between the WEOC and the total organic carbon (TOC) content. The soil profile "Monte Pietroso" is located in the Murge area, Apulia region in Southern Italy. Samples from the eight horizons (Ap1, Ap2, Ab1, Ab2, Bt1, 2B, 2Bt2, and 2B/C) were collected in October 2002. The WEOM characterization was carried out by means of UV absorbance, fluorescence spectroscopy in the emission and excitation/emission matrix (EEM) modes, and additional spectroscopic derived indexes. Soil organic carbon was shown to accumulate in the top horizons (Ap) and, in general, to decrease with depth, whereas, the WEOM/TOC ratio increases with increasing depth. The aromaticity and the humification index of the WEOM decrease dramatically downward the soil profile, whereas the fluorescence efficiency index tends to increase markedly. The WEOM fractions feature three main fluorophores with different wavelength and relative intensity. In general WEOM transport phenomena are suggested to occur downward the soil profile, depending on the nature of the organic material and on the chemical and mineral characteristics of the various horizons.  相似文献   

16.
Xue N  Seip HM  Guo J  Liao B  Zeng Q 《Chemosphere》2006,65(11):2468-2476
Distribution of Al-, Fe- and Mn-pools was investigated in five forest soil profiles (consisting of four horizons) in each of two Hunan catchments (BLT and LKS) where acid deposition has been considered critical. Al- and Fe-pools were higher in BLT than those in LKS, but Mn-pools much lower in BLT. Mn-pools vary from topsoils to bottom soils, but there are different trends for different Mn speciation. Al- and Fe-pools, except amorphous Feox, were positively correlated to contents of soil organic matter (OM) showed by the loss on ignition in the two catchments. Accumulation of Al- and Fe-pools may occur in the area where soil organic matter was enriched (e.g. in top soil and rhizosphere soil). However, no direct correlation is observed between Mn and OM. Acidic atmospheric deposition may affect transforming among speciations of Al-, Fe- and Mn-pools and leaching of soil Al, Fe and Mn through formation of soluble organo-metal dissolved Al which was potentially toxic, increased. There were significant correlations between Al-pools complexes or change of oxidation–reduction conditions. Mnex (exchangeable Mn) and Mnox (amorphous and organic Mn) were highly linearly correlation with soil pH values at LKS but at BLT. Under acid deposition, the availability of the nutrient Fe increased with the amount of dissolved Al, which was potentially toxic, in the two catchments. There are no significant correlations between Alex (exchangeable Al) and Mnex, Feex (exchangeable Fe) and Mnex in this work, indicating potentially toxic Mn increase seldom accompanying with Al increase in the two catchments.  相似文献   

17.
BACKGROUND, AIM, AND SCOPE: High SO(2) concentrations as have been observed over decades in the Ruhr district lead to a remarkable reduction of leaf area in the majority of the characteristic broad-leafed herbs of the Central European beech forests even after only a few months of experimental fumigation. Thus, it is no wonder in the time of high SO(2) pollution, e.g., in the town of Herne (centre of the Ruhr district), that there was not a single beech forest hosting, for instance, Viola reichenbachiana or Anemone nemorosa. As air quality has improved very much over some decades in the Ruhr district, one can expect a recolonisation of the beech forests by the species of former time characteristic for the herb layer. However, one has to consider that only the air pollution was reduced, while soil acidification and contamination with heavy metals and PAH are, on the short run, irreversible. That is why experiments were carried out, considering the question as to whether recolonisation of the forests of the Ruhr district by the aforementioned species is possible and why such a recolonisation up to now has not occurred. MATERIALS AND METHODS: The experiments were carried out in a beech forest situated in the centre of the Ruhr district in the City of Herne. The wood anemone (A. nemorosa) was chosen as test plant because of its high frequency in beech forests on loess soils outside the Ruhr district, and its absence in beech forests in the Ruhr district. The experiments with A. nemorosa were carried out in three variants with different soils: (a): soil of the local forests (R); (b): soil of the local forests whose soot layer was removed (r); (c): imported soil from a clean air region far away from the Ruhr district (Odenwald). RESULTS: Survival of rhizomes of A. nemorosa is possible for some years in the soils of the Ruhr district; however, the establishment of a population could not be achieved. The results obtained by the imported soil show that it is no longer air pollution, but the soil which prevents the establishment of a population. Sexual reproduction is rather impossible because of the thick litter layer with which all of the Ruhr district's beech forests are covered. DISCUSSION: With respect to the unfavourable chemistry of the soil of the Ruhr district and in consideration of the unfavourable attributes of the soot layer, the author expected the following order of the development of shoot numbers: O > r > R. However, the result is: O > R > r. In contrast to the expected result, the soot layer has no negative but slightly positive effects on the implanted rhizomes. A possible explanation is that the soot layer, which is situated immediately below the top soil, prevents the top soil from drying up and thus even protects the rhizomes from desiccation. Also, the possibility has to be considered that the soot layer functions as a nutrient storage area. CONCLUSIONS: At present, a survival of the rhizomes of A. nemorosa in the soils of the Ruhr district is temporarily possible but does not lead to the establishment of a permanent population. This only can be achieved by additional sexual reproduction. However, the thick litter layer present in all beech forests of the Ruhr district prevents the establishment of seedlings, i.e., it does not allow sexual reproduction to contribute to the population. The soot layer situated below the litter layer represents a second hindrance for germination. Other than seedlings, rhizomes are not negatively affected by the soot layer but even a slight stabilisation has to be stated. As a reason for this slightly positive effect, a protection of the upper mineral soil from desiccation by the hydrophob soot layer has to be considered. Secondly, the soot layer may serve as a nutrient storage which is of particular importance in acid soils, because acidification generally leads to a leeching of nutrients. To answer these questions, detailed further research is necessary. RECOMMENDATIONS AND PERSPECTIVES: In order to restore the formerly rich herbaceous layer of the forests of the Ruhr district, experiments (removal of the litter layer; liming; ploughing) should be carried out at broad-scale to solve the question of how the strong negative effects of the established thick raw humus layer can be reduced or even be avoided. When the problem of the humus layer is solved, the beech forests of the Ruhr district today highly impoverished in species will become a vivid ecosystem, rich in flowering herbaceous species and thus much more attractive for the people of the Ruhr district than at present.  相似文献   

18.
The objective of this study was to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) mineralization in soil profiles characteristic of hummocky, calcareous-soil landscapes in western Canada. Twenty-five soil cores (8 cm inner diameter, 50 to 125 cm length) were collected along a 360 m transect running west to east in an agricultural field and then segmented by soil-landscape position (upper slopes, mid slopes, lower slopes and depressions) and soil horizon (A, B, and C horizons). In the A horizon, 2,4-D mineralization commenced instantaneously and the mineralization rate followed first-order kinetics. In both the B and C horizons, 2,4-D mineralization only commenced after a lag period of typically 5 to 7 days and the mineralization rate was biphasic. In the A horizon, 2,4-D mineralization parameters including the first-order mineralization rate constant (k 1), the growth-linked mineralization rate constant (k 2) and total 2,4-D mineralization at the end of the experiment at 56 days, were most strongly correlated to parameters describing 2,4-D sorption by soil, but were also adequately correlated to soil organic carbon content, soil pH, and carbonate content. In both B and C horizons, there was no significant correlation between 2,4-D mineralization and 2,4-D sorption parameters, and the correlation between soil properties and 2,4-D mineralization parameters was very poor. The k 1 significantly decreased in sequence of A horizon (0.113% day?1) > B horizon (0.024% day?1) = C horizon (0.026% day?1) and in each soil horizon was greater than k 2. Total 2,4-D mineralization at 56 days also significantly decreased in sequence of A horizon (42%) > B horizon (31%) = C horizon (27%). In the A horizon, slope position had little influence on k 1 or k 2, except that k 1 was significantly greater in upper slopes (0.170% day?1) than in lower slopes (0.080% day?1). Neither k 1 nor k 2 was significantly influenced by slope position in the B or C horizons. Total 2,4-D mineralization at 56 days was not influenced by slope positions in any horizon. Our results suggest that, when predicting 2,4-D transport at the field scale, pesticide fate models should consider the strong differences in 2,4-D mineralization between surface and subsurface horizons. This suggests that 2,4-D mineralization is best predicted using a model that has the ability to describe a range of non-linear mineralization curves. We also conclude that the horizontal variations in 2,4-D mineralization at the field scale will be difficult to consider in predictions of 2,4-D transport at the field scale because, within each horizon, 2,4-D mineralization was highly variable across the twenty-five soil cores, and this variability was poorly correlated to soil properties or soil-landscape position.  相似文献   

19.
Abstract

The metabolism of 14C‐carbaryl and 14C‐1‐naphthol in moist and flooded soils was studied in a continuous flow‐through system over a period of 28 days permitting 14C‐mass balance. The percent distribution of radiocarbon in organic volatiles, carbon dioxide, extractable and non‐extractable (bound) fractions of soils were determined. Organic volatiles could not be detected in both carbaryl and 1‐naphthol treated soils. More of 14CO2 (25.6%) was evolved from moist than flooded soil (15.1%) treated with carbaryl. However, the mineralization of 14C‐1‐naphthol was negligible. The extractable radiocarbon was more in flooded soil (28.9%) than moist soil (5.5%) from carbaryl treatment. Less than one percent was present as parent compound, whereas carbaryl was mainly metabolized to 5‐hydroxy carbaryl in moist soil and to 4‐ and 5‐hydroxy carbaryl in flooded soil. The extractable radiocarbon amounted to 18.2 and 24.3% in moist and flooded soils respectively and the parent compound was less than one percent with 1‐naphthol treatment. Most of the radiocarbon was found as soil bound residues; the formation being more with 1‐naphthol than carbaryl. Humin fraction of the soil organic matter contributed most to soil bound residues of both carbaryl and 1‐naphthol.  相似文献   

20.
Sarkar D  Datta R  Sharma S 《Chemosphere》2005,60(2):188-195
A laboratory incubation study was conducted to estimate geochemical speciation and in vitro bioavailability of arsenic as a function of soil properties. Two chemically-variant soil types were chosen, based on their potential differences with respect to arsenic reactivity: an acid sand with minimal arsenic retention capacity and a sandy loam with relatively high concentration of amorphous Fe/Al-oxides, considered a sink for arsenic. The soils were amended with dimethylarsenic acid (DMA) at three rates: 45, 225, and 450 mg/kg. A sequential extraction scheme was employed to identify the geochemical forms of arsenic in soils, which were correlated with the "in vitro" bioavailable fractions of arsenic to identify the most bioavailable species. Arsenic bioavailability and speciation studies were done at 0 time (immediately after spiking the soils with pesticide) and after four-months incubation. Results show that soil properties greatly impact geochemical speciation and bioavailability of DMA; soils with high concentrations of amorphous Fe/Al oxides retain more arsenic, thereby rendering them less bioavailable. Results also indicate that the use of organic arsenicals as pesticides in mineral soils may not be a safe practice from the viewpoint of human health risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号