首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   1篇
污染及防治   1篇
社会与环境   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 171 毫秒
1
1.
Heavy metal pollution and forest health in the Ukrainian Carpathians   总被引:2,自引:0,他引:2  
The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils.  相似文献   
2.
The allozyme analysis of six local populations of Pinus mugo Turra and six populations of P. sylvestris L. in the Ukrainian Carpathians, Swiss Alps, and Schwarzwald has shown a higher polymorphism and greater interpopulation differentiation of the Carpathian group of P. mugo populations compared to the Alpine group (Nei’s genetic distance DN 78 at the level of geographic population group is −0.023). A genetic differentiation of DN 78 = 0.049 between these populations, which are isolated by a distance of more than 1000 km, has been found. This confirms the existence of the subspecies P. mugo ssp. mugo and P. mugo ssp. uncinata in the Carpathians and Alps, respectively. The hypothesis is put forward that the former subspecies has been formed in the Balkans and the latter, in the Pyreneans. It has been demonstrated that regional populations and geographic groups of P. sylvestris are less differentiated than those of P. mugo.  相似文献   
3.
As a result of studies in natural beech forests of the Ukrainian Carpathians and review of published data, a scheme of their asynchronous mosaic decline, natural regeneration, age-related regeneration dynamics, and centennial dynamics has been formulated on a population-ecological basis.  相似文献   
4.
Abstract: Ecosystem services are being protected and restored worldwide through payments for ecosystem services in which participants are paid to alter their land‐management approaches to benefit the environment. The efficiency of such investments depends on the design of the payment scheme. Land features have been used to measure the environmental benefits of and amount of payment for land enrollment in payment for ecosystem services schemes. Household characteristics of program participants, however, may also be important in the targeting of land for enrollment. We used the characteristics of households participating in China's Grain‐to‐Green program, and features of enrolled land to examine the targeting of land enrollment in that program in Wolong Nature Reserve. We compared levels of environmental benefits that can be obtained through cost‐effective targeting of land enrollment for different types of benefits under different payment schemes. The efficiency of investments in a discriminative payment scheme (payments differ according to opportunity costs, i.e., landholders’ costs of forgoing alternative uses of land) was substantially higher than in a flat payment scheme (same price paid to all participants). Both optimal targeting and suboptimal targeting of land enrollment for environmental benefits achieved substantially more environmental benefits than random selection of land for enrollment. Our results suggest that cost‐effective targeting of land through the use of discriminative conservation payments can substantially improve the efficiency of investments in the Grain‐to‐Green program and other payment for ecosystem services programs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号