首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a Digital Elevation Model‐based hydrologic analysis methodology for continental flood inundation mapping (CFIM), implemented as a cyberGIS scientific workflow in which a 1/3rd arc‐second (10 m) height above nearest drainage (HAND) raster data for the conterminous United States (CONUS) was computed and employed for subsequent inundation mapping. A cyberGIS framework was developed to enable spatiotemporal integration and scalable computing of the entire inundation mapping process on a hybrid supercomputing architecture. The first 1/3rd arc‐second CONUS HAND raster dataset was computed in 1.5 days on the cyberGIS Resourcing Open Geospatial Education and Research supercomputer. The inundation mapping process developed in our exploratory study couples HAND with National Water Model forecast data to enable near real‐time inundation forecasts for CONUS. The computational performance of HAND and the inundation mapping process were profiled to gain insights into the computational characteristics in high‐performance parallel computing scenarios. The establishment of the CFIM computational framework has broad and significant research implications that may lead to further development and improvement of flood inundation mapping methodologies.  相似文献   

2.
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water‐related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium‐resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate‐and‐transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user‐defined applications.  相似文献   

3.
This article couples two existing models to quickly generate flow and flood‐inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April‐June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000‐km2 area in the Midwest and a 109,500‐km2 area in the Mississippi Delta into thirty‐nine 1° by 1° tiles, AutoRoute simulated a high‐resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F‐statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.  相似文献   

4.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

5.
Flood inundation maps play a key role in assessment and mitigation of potential flood hazards. However, owing to high costs associated with the conventional flood mapping methods, many communities in the United States lack flood inundation maps. The objective of this study is to develop and examine an economical alternative approach to floodplain mapping using widely available soil survey geographic (SSURGO) database. In this study, floodplain maps are developed for the entire state of Indiana, and some counties in Minnesota, Wisconsin, and Washington states by identifying flood‐prone soil map units based on their attributes. For validation, the flood extents obtained from SSURGO database are compared with the extents from other floodplain maps such as the Federal Emergency Management Agency issued flood insurance rate maps (FIRMs), flood extents observed during past floods, and flood maps derived using digital elevation models. In general, SSURGO‐based floodplain maps (SFMs) are largely in agreement with other flood inundation maps. Specifically, the floodplain extents from SFMs cover 78‐95% area compared to FIRMs and observed flood extents. Thus, albeit with a slight loss in accuracy, the SSURGO approach offers an economical and fast alternative for floodplain mapping. In particular, it has potentially high utility in areas where no detailed flood studies have been conducted.  相似文献   

6.
River channel geometry is an important input to hydraulic and hydrologic models. Traditional approaches to quantify river geometry have involved surveyed river cross sections, which cannot be extended to ungaged basins. In this paper, we describe a method for developing a synthetic rating curve to relate flow to water level in a stream reach based on reach‐averaged channel geometry properties developed using the Height above Nearest Drainage (HAND) method. HAND uses a digital elevation model (DEM) of the terrain and computes the elevation difference between each land surface cell and the stream bed cell to which it drains. Taking increments in water level in the stream, HAND defines the inundation zone and a water depth grid within this zone, and the channel characteristics are defined from this water depth grid. We apply our method to the Blanco River (Texas) and the Tar River (North Carolina) using 10‐m terrain data from the United States Geological Survey (USGS) 3D Elevation Program (3DEP) dataset. We evaluate the method's performance by comparing the reach‐average stage‐river geometry relationships and rating curves to those from calibrated Hydrologic Engineering Center's River Analysis System (HEC‐RAS) models and USGS gage observations. The results demonstrate that after some adjustment, the river geometry information and rating curves derived from HAND using national‐coverage datasets are comparable to those obtained from hydraulic models or gage measurements. We evaluate the inundation extent and show our approach is able to capture the majority of the Federal Emergency Management Agency (FEMA) 100‐year floodplain.  相似文献   

7.
One approach for performing uncertainty assessment in flood inundation modeling is to use an ensemble of models with different conceptualizations, parameters, and initial and boundary conditions that capture the factors contributing to uncertainty. However, the high computational expense of many hydraulic models renders their use impractical for ensemble forecasting. To address this challenge, we developed a rating curve library method for flood inundation forecasting. This method involves pre‐running a hydraulic model using multiple inflows and extracting rating curves, which prescribe a relation between streamflow and stage at various cross sections along a river reach. For a given streamflow, flood stage at each cross section is interpolated from the pre‐computed rating curve library to delineate flood inundation depths and extents at a lower computational cost. In this article, we describe the workflow for our rating curve library method and the Rating Curve based Automatic Flood Forecasting (RCAFF) software that automates this workflow. We also investigate the feasibility of using this method to transform ensemble streamflow forecasts into local, probabilistic flood inundation delineations for the Onion and Shoal Creeks in Austin, Texas. While our results show water surface elevations from RCAFF are comparable to those from the hydraulic models, the ensemble streamflow forecasts used as inputs to RCAFF are the largest source of uncertainty in predicting observed floods.  相似文献   

8.
National Water Model (NWM) simulates the hydrologic cycle and produces streamflow forecasts for 2.7 million reaches in the National Hydrography Dataset for continental United States (U.S.). NWM uses Muskingum–Cunge channel routing, which is based on the continuity equation. However, the momentum equation also needs to be considered to obtain more accurate estimates of streamflow and stage in rivers, especially for applications such as flood‐inundation mapping. Here, we used a steady‐state backwater version of Simulation Program for River NeTworks (SPRNT) model. We evaluated SPRNT’s and NWM’s abilities to predict inundated area for the record flood of Hurricane Matthew in October 2016. The Neuse River experienced record‐breaking floods and was well‐documented by U.S. Geological Survey. Streamflow simulations from NWM retrospective analysis were used as input for the SPRNT simulation. Retrospective NWM discharge predictions were converted to stage. The stages (from both SPRNT and NWM) were utilized to produce flood‐inundation maps using the Height Above Nearest Drainage method which uses the local relative heights to find out the local draining potentials and provide spatial representation of inundated area. The inundated‐area accuracies for NWM and SPRNT (based on comparison to a remotely sensed dataset) were 65.1% and 67.6%, respectively. These results show using steady‐state SPRNT results in a modest improvement of inundation‐forecast accuracy compared to NWM.  相似文献   

9.
While deterministic forecasts provide a single realization of potential inundation, the inherent uncertainty associated with forecasts also needs to be conveyed for improved decision support. The objective of this study was to develop an ensemble framework for the quantification and visualization of uncertainty associated with flood inundation forecast maps. An 11‐member ensemble streamflow forecast at lead times from 0 to 48 hr was used to force two hydraulic models to produce a multimodel ensemble. The hydraulic models used are (1) the International River Interface Cooperative along with Flow and Sediment Transport with Morphological Evolution of Channels solver and (2) the two‐dimensional Hydrologic Engineering Center‐River Analysis System. Uncertainty was quantified and augmented onto flood inundation maps by calculating statistical spread among the ensemble members. For visualization, a series of probability flood maps conveying the uncertainty in forecasted water extent, water depth, and flow velocity was disseminated through a web‐based decision support tool. The results from this study offer a framework for quantifying and visualizing model uncertainty in forecasted flood inundation maps.  相似文献   

10.
The National Weather Service (NWS) forecasts floods at approximately 3,600 locations across the United States (U.S.). However, the river network, as defined by the 1:100,000 scale National Hydrography Dataset‐Plus (NHDPlus) dataset, consists of 2.7 million river segments. Through the National Flood Interoperability Experiment, a continental scale streamflow simulation and forecast system was implemented and continuously operated through the summer of 2015. This system leveraged the WRF‐Hydro framework, initialized on a 3‐km grid, the Routing Application for the Parallel Computation of Discharge river routing model, operating on the NHDPlus, and real‐time atmospheric forcing to continuously forecast streamflow. Although this system produced forecasts, this paper presents a study of the three‐month nowcast to demonstrate the capacity to seamlessly predict reach scale streamflow at the continental scale. In addition, this paper evaluates the impact of reservoirs, through a case study in Texas. Validation of the uncalibrated model using observed hourly streamflow at 5,701 U.S. Geological Survey gages shows 26% demonstrate PBias ≤ |25%|, 11% demonstrate Nash‐Sutcliffe Efficiency (NSE) ≥ 0.25, and 6% demonstrate both PBias ≤ |25%| and NSE ≥ 0.25. When evaluating the impact of reservoirs, the analysis shows when reservoirs are included, NSE ≥ 0.25 for 56% of the gages downstream while NSE ≥ 0.25 for 11% when they are not. The results presented here provide a benchmark for the evolving hydrology program within the NWS and supports their efforts to develop a reach scale flood forecasting system for the country.  相似文献   

11.
The objective of this study was to determine the accuracy of five different digital image processing techniques to map flood inundation extent with Landsat 8–Operational Land Imager satellite imagery. The May 2016 flooding event in the Hempstead region of the Brazos River, Texas is used as a case study for this first comprehensive comparison of classification techniques of its kind. Five flood water classification techniques (i.e., supervised classification, unsupervised classification, delta‐cue change detection, Normalized Difference Water Index [NDWI], modified NDWI [MNDWI]) were implemented to characterize flooded regions. To identify flood water obscured by cloud cover, a digital elevation model (DEM)–based approach was employed. Classified floods were compared using an Advanced Fitness Index to a “reference flood map” created based on manual digitization, as well as other data sources, using the same satellite image. Supervised classification yielded the highest accuracy of 86.4%, while unsupervised, MNDWI, and NDWI closely followed at 79.6%, 77.3%, and 77.1%, respectively. Delta‐cue change detection yielded the lowest accuracy with 70.1%. Thus, supervised classification is recommended for flood water classification and inundation map generation under these settings. The DEM‐based approach used to identify cloud‐obscured flood water pixels was found reliable and easy to apply. It is therefore recommended for regions with relatively flat topography.  相似文献   

12.
ABSTRACT: Understanding the effects of dams on the inundation regime of natural floodplain communities is critical for effective decision making on dam management or dam removal. To test the implications of hydrologic alteration by dams for floodplain natural communities, we conducted a combined field and modeling study along two reaches in the Connecticut River Rapids Macrosite (CRRM), one of the last remaining flowing water sections of the Upper Connecticut River. We surveyed multiple channel cross sections at both locations and concurrently identified and surveyed the elevations of important natural communities, native species of concern, and nonnative invasive species. Using a hydrologic model, HEC‐RAS, we routed estimated pre‐and post‐impoundment discharges of different design recurrence intervals (two year through 100 year floods) through each reach to establish corresponding reductions in elevation and effective wetted perimeter following post‐dam discharge reductions. By comparing (1) the frequency and duration of flooding of these surfaces before and after impoundment and (2) the total area flooded at different recurrence intervals, our goal was to derive a spatially explicit assessment of hydrologic alteration, directly relevant to natural floodplain communities. Post‐impoundment hydrologic alteration profoundly affected the subsequent inundation regime, and this impact was particularly true of higher floodplain terraces. These riparian communities, which were flooded, on average, every 20 to 100 years pre‐impoundment, were predicted to flood at 100 ? 100 year intervals, essentially isolating them completely from riverine influence. At the pre‐dam five to ten year floodplain elevations, we observed smaller differences in predicted flood frequency but substantial differences in the total area flooded and in the average flood duration. For floodplain forests in the Upper Connecticut River, this alteration by impoundment suggests that even if other stresses facing these communities (human development, invasive exotics) were alleviated, this may not be sufficient to restore intact natural communities. More generally, our approach provides a way to combine site specific variables with long term gage records in assessing the restorative potential of dam removal.  相似文献   

13.
The National Flood Interoperability Experiment is a research collaboration among academia, National Oceanic and Atmospheric Administration National Weather Service, and government and commercial partners to advance the application of the National Water Model for flood forecasting. In preparation for a Summer Institute at the National Water Center in June‐July 2015, a demonstration version of a near real‐time, high spatial resolution flood forecasting model was developed for the continental United States. The river and stream network was divided into 2.7 million reaches using the National Hydrography Dataset Plus geospatial dataset and it was demonstrated that the runoff into these stream reaches and the discharge within them could be computed in 10 min at the Texas Advanced Computing Center. This study presents a conceptual framework to connect information from high‐resolution flood forecasting with real‐time observations and flood inundation mapping and planning for local flood emergency response.  相似文献   

14.
Caruso, Brian S. and Joshua Haynes, 2011. Biophysical‐Regulatory Classification and Profiling of Streams Across Management Units and Ecoregions. Journal of the American Water Resources Association (JAWRA) 00(0):1‐22. DOI: 10.1111/j.1752‐1688.2010.00522.x Abstract: Aquatic resources management in the United States (U.S.) under Clean Water Act Section 404 has become more complex after recent Supreme Court decisions and U.S. Army Corps of Engineers and Environmental Protection Agency (USEPA) guidance. Many intermittent/ephemeral and headwater streams may not be jurisdictional if they lack a significant nexus with navigable waters. Streams in semiarid USEPA Region 8 were classified based on hydrologic permanence and stream order using National Hydrography Dataset (NHD) Plus and GIS to provide information across broad spatial scales to aid with jurisdictional determinations (JDs). Four classes were developed for profiling across management units and ecoregions. Based on medium‐resolution NHDPlus data, intermittent streams comprise >¾, and first order streams constitute >½ of the total stream length in Region 8. Mountain states and ecoregions have the largest percentage of perennial first order streams, whereas the Dakotas, plains, and desert ecoregions have the greatest percentages of intermittent first order and intermittent higher order streams. In the Upper Colorado River Basin, >50% of reaches are intermittent first order, and 9% are perennial first order. NHDPlus data can significantly underestimate the length of headwater and intermittent streams, but can still be a valuable tool to help develop stream classes and for regional JD planning and analysis. Refinement of the stream classes using high resolution NHD data and other key catchment parameters can improve their utility for JDs.  相似文献   

15.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

16.
Regarding emerging large‐scale reservoir operation models, reports of reservoir operation feedback for hydrologic modeling are rare, and little attention has been paid to flood control. An operation scheme considering multilevel flood control (MLFC) was first proposed in this study, but more reservoir information was needed. Thus, an alternative scheme was proposed that consisted of a modified version of the reservoir operation scheme in the Soil and Water Assessment Tool Model (MSWAT scheme). These schemes were coupled to a land surface and hydrologic model system with feedback, i.e., a system in which reservoir operation can affect the subsequent simulation, and were investigated in the Huai River Basin. The results show reservoir storage and peak flow were generally overestimated by the original SWAT reservoir scheme (SWAT scheme). Compared with the SWAT scheme, the MSWAT scheme successfully reduced the simulated storage and peak flow at the reservoir stations. For the downstream stations, the streamflow simulations were improved at a significance level of 5%. The performances of the MSWAT and MLFC schemes at the reservoir stations were nearly equivalent. Importantly, reservoir operation feedback to hydrologic modeling was necessary because the reservoir operation effects could not be transferred downstream without it. The streamflow simulation of a reservoir station located on a flat plain was less sensitive to feedback than that of a mountain reservoir station.  相似文献   

17.
This study contributes a bathtub‐style inundation prediction model with abstractions of coastal processes (i.e., storm surge and wave runup) for flood forecasting at medium‐range (weekly to monthly) timescales along the coastline of large lakes. Uncertainty from multiple data sources are propagated through the model to establish probabilistic bounds of inundation, providing a conservative measure of risk. The model is developed in a case study of the New York Lake Ontario shoreline, which has experienced two record‐setting floods over the course of three years (2017–2019). Predictions are developed at a parcel‐level and are validated using inundation accounts from an online survey and flyover imagery taken during the recent flood events. Model predictions are compared against a baseline, deterministic model that accounts for the same processes but does not propagate forward data uncertainties. Results suggest that a probabilistic approach helps capture observed instances of inundation that would otherwise be missed by a deterministic inundation model. However, downward biases are still present in probabilistic predictions, especially for parcels impacted by wave runup. The goal of the tool is to provide community planners and property owners with a conservative, parcel‐level assessment of flood risk to help inform short‐term emergency response and better prepare for future flood events.  相似文献   

18.
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS‐based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large‐scale event for which we use medium resolution input layer (10 m) and a small‐scale event for which we use a high‐resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.  相似文献   

19.
Real‐time flood inundation mapping is vital for emergency response to help protect life and property. Inundation mapping transforms rainfall forecasts into meaningful spatial information that can be utilized before, during, and after disasters. While inundation mapping has traditionally been conducted on a local scale, automated algorithms using topography data can be utilized to efficiently produce flood maps across the continental scale. The Height Above the Nearest Drainage method can be used in conjunction with synthetic rating curves (SRCs) to produce inundation maps, but the performance of these inundation maps needs to be assessed. Here we assess the accuracy of the SRCs and calculate statistics for comparing the SRCs to rating curves obtained from hydrodynamic models calibrated against observed stage heights. We find SRCs are accurate enough for large‐scale approximate inundation mapping while not as accurate when assessing individual reaches or cross sections. We investigate the effect of terrain and channel characteristics and observe reach length and slope predict divergence between the two types of rating curves, and SRCs perform poorly for short reaches with extreme slope values. We propose an approach to recalculate the slope in Manning’s equation as the weighted average over a minimum distance and assess accuracy for a range of moving window lengths.  相似文献   

20.
River networks based on Digital Elevation Model (DEM) data differ depending on the DEM resolution, accuracy, and algorithms used for network extraction. As spatial scale increases, the differences diminish. This study explores methods that identify the scale where networks obtained by different methods agree within some margin of error. The problem is relevant for comparing hydrologic models built around the two networks. An example is the need to compare streamflow prediction from the Hillslope Link Model (HLM) operated by the Iowa Flood Center (IFC) and the National Water Model (NWM) operated by the National Water Center of the National Oceanic and Atmospheric Administration. The HLM uses landscape decomposition into hillslopes and channel links while the NWM uses the NHDPlus dataset as its basic spatial support. While the HLM resolves the scale of the NHDPlus, the outlets of the latter do not necessarily correspond to the nodes of the HLM model. The authors evaluated two methods to map the outlets of NHDPlus to outlets on the IFC network. The methods compare the upstream areas of the channels and their spatial location. Both methods displayed similar performance and identified matches for about 80% of the outlets with a tolerance of 10% in errors in the upstream area. As the aggregation scale increases, the number of matches also increases. At the scale of 100 km2, 90% of the outlets have matches with tolerance of 5%. The authors recommend this scale for comparing the HLM and NWM streamflow predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号