首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spirotox--a new tool for testing the toxicity of volatile compounds.   总被引:1,自引:0,他引:1  
G Na?ecz-Jawecki  J Sawicki 《Chemosphere》1999,38(14):3211-3218
A new method for estimating the toxicity of volatile compounds was developed. The test was carried out in the disposable polystyrene multiwells. After the organisms, protozoa Spirostomum ambiguum, were added to the wells, microplate was tightly closed using silicone grease and polyethylene film. The toxicities of 21 organic compounds were estimated. No control mortality was observed in all cases. Transparent PE film enabled good observation of test response. The toxicity of tested compounds varied over 4 orders of magnitude. Deformations were 2-4 more sensitive toxic response then lethality. The toxicity of tested compounds in Spirotox test correlates well with the log Kow and toxicity results from other bioassays: Microtox, D. magna and T. pyriformis.  相似文献   

2.
The toxicity of mononitrophenols and dinitrophenols (DNP) to luminescent bacteria Vibrio fischeri (Microtox test) and ciliated protozoan Spirostomum ambiguum (Spirotox test) was evaluated. Spirotox was more sensitive to the tested nitrophenols (NPs) than the Microtox test. 2,5-DNP was the most toxic and 2-NP was the least toxic to the both bioindicators. The toxicity depended greatly on the pH of the medium. The highest changes were observed for DNPs, where the toxicity decreased more than 20-times when the pH increased from 6 to 8. No significant decrease of the toxicity was found for NPs, when the pH increased from 6 to 7. Greater increase of the pH to 8 caused from 1.5 to 4-fold decrease of the toxicity.  相似文献   

3.
The leachates from 22 municipal solid waste (MSW) landfill sites in Southern Poland were characterized by evaluation of chemical, microbiological and ecotoxicological parameters. Chemical analyses were mainly focused on the identification of the priority hazardous substances according to Directive on Priority Substances, 2008/105/EC (a daughter directive of the WFD) in leachates. As showed, only five substances (Cd, Hg, hexachlorobutadiene, pentachlorobenzene and PAHs) were detected in the leachates. The compounds tested were absent or present at very low concentrations. Among them, only PAHs were found in all samples in the range from 0.057 to 77.2 μg L−1. The leachates were contaminated with bacteria, including aerobic, psychrophilic and mesophilic bacteria, coliform and fecal coliforms, and spore-forming-bacteria, including Clostridium perfringens, and with filamentous fungi. From the analysis of specific microorganism groups (indicators of environmental pollution by pathogenic or opportunistic pathogenic organisms) it can be concluded that the landfill leachates showed sanitary and epidemiological hazard. In the ecotoxicological study, a battery of tests comprised of 5 bioassays, i.e. Microtox®, Spirotox, Rotoxkit F™, Thamnotoxkit F™ and Daphtoxkit F™ magna was applied. The leachate samples were classified as toxic in 13.6%, highly toxic in 54.6% and very highly toxic in 31.8%. The Spirotox test was the most sensitive bioassay used. The percentage of class weight score was very high - above 60%; these samples could definitely be considered seriously hazardous and acutely toxic to the fauna and microflora.No correlations were found between the toxicity values and chemical parameters. The toxicity of leachate samples cannot be explained by low levels of the priority pollutants. It seems that other kinds of xenobiotics present in the samples at subacute levels gave the high aggregate toxic effect.The chemical, ecotoxicological and microbiological parameters of the landfill leachates should be analyzed together to assess the environmental risk posed by landfill emissions.  相似文献   

4.
To assess soil quality and risk assessment, bioassays can be useful tools to gauge the potential toxicity of contaminants focusing on their bioavailable fraction. A rapid and sublethal avoidance behaviour test was used as a screening tool with the earthworm Eisenia andrei and the isopod Porcellionides pruinosus, where organisms were exposed during 48 h to several chemicals (lindane, dimethoate and copper sulphate, for isopods and carbendazim, benomyl, dimethoate and copper sulphate for earthworms). Both species were also exposed to soils from an abandoned mine. For all bioassays a statistical approach was used to derive EC50 values. Isopods and earthworms were able to perceive the presence of toxic compounds and escaping from contaminated to clean soil. Furthermore the behaviour parameter was equally or more sensitive then other sublethal parameters (e.g. reproduction or growth), expressing the advantages of Avoidance Behaviour Tests as screening tools in ERA.  相似文献   

5.
The standardized bioluminescence assay with Vibrio fischeri underestimates the aquatic toxicity of chemicals which interfere with metabolic pathways supporting long term processes like growth and reproduction due to its short incubation time (30 min). Therefore this short term assay was compared with two alternative bioassays with prolonged incubation times using the same test organism: the growth inhibition assay (7 h) and the long term bioluminescence assay (24 h). Two sets of compounds were selected to reflect acute and delayed toxicity. The first group comprised pentachlorophenol, dodecylpyridiniumbromide and 3,4-dichloroaniline and the second nalidixic acid, chloramphenicol and streptomycinsulfate. The effects of compounds with acute toxicity are determined with similar sensitivity in all bioassays. Substances with delayed toxicity show only minor or no toxicities in the standardized short term bioassay but severe effects in both long term bioassays independent of the parameter used. It is concluded that the standardized short term bioluminescence assay exhibits serious limitations for the assessment of aquatic toxicity. The long term bioassays, however, may help to overcome these limitations.  相似文献   

6.
This study examined the toxicity of irgarol, individually and in binary mixtures with three other pesticides (the fungicide chlorothalonil, and the herbicides atrazine and 2,4-D), to the marine phytoplankton species Dunaliella tertiolecta. Standard 96-h static algal bioassays were used to determine pesticide effects on population growth rate. Irgarol significantly inhibited D. tertiolecta growth rate at concentrations > or = 0.27 micro g/L. Irgarol was significantly more toxic to D. tertiolecta than the other pesticides tested (irgarol 96 h EC50 = 0.7 micro g/L; chlorothalonil 96 h EC50 = 64 micro g/L; atrazine 96 h EC50 = 69 micro g/L; 2,4-D 96 h EC50 = 45,000 micro g/L). Irgarol in mixture with chlorothalonil exhibited synergistic toxicity to D. tertiolecta, with the mixture being approximately 1.5 times more toxic than the individual compounds. Irgarol and atrazine, both triazine herbicides, were additive in mixture. The toxicity threshold of 2,4-D was much greater than typical environmental levels and would not be expected to influence irgarol toxicity. Based on these interactions, overlap of certain pesticide applications in the coastal zone may increase the toxicological risk to resident phytoplankton populations.  相似文献   

7.
GOAL, SCOPE AND BACKGROUND: Sweden is meeting prohibition for deposition of organic waste from 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a higher degree. Two biological treatment alternatives are anaerobic digestion and composting. Different oxygen concentrations result in different microbial degradation pathways and, consequently, in a different quality of the digestion or composting residue, It is therefore necessary to study sludge treatment during different oxygen regimes in order to follow both degradation of compounds and change in toxicity. In this study, an industrial sludge containing explosives and pharmaceutical residues was treated with anaerobic digestion or composting, and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of both pharmaceutical and explosives, are well known to cause cytotoxicity and genotoxicity. However, little data are available concerning sludge with nitroaromatics and any associated dioxin-like activity. Therefore, we studied the sludge before and after the treatments in order to detect any changes in levels of Ah receptor (AhR) agonists using two bioassays for dioxin-like compounds. METHODS: An industrial sludge was treated with anaerobic digestion or composting in small reactors in a semi-continuous manner. The same volume as the feeding volume was taken out daily and stored at -20 degrees C. Sample preparation for the bioassays was done by extraction using organic solvents, followed by clean up with silica gel or sulphuric acid, yielding two fractions. The fractions were dissolved in DMSO and tested in the bioassays. The dioxin-like activity was measured using the DR-CALUX assay with transfected H4IIE rat hepatoma pGudluc cells and an EROD induction assay with RTL-W1 rainbow trout liver cells. RESULTS AND DISCUSSION: The bioassays showed that the sludge contained AhR agonists at levels of TCDD equivalents (TEQs) higher than other sludge types in Sweden. In addition, the TEQ values for the acid resistant fractions increased considerably after anaerobic digestion, resulting in an apparent formation of acid resistant TEQs in the anaerobic reactors. Similar results have been reported from studies of fermented household waste. There was a large difference in effects between the two bioassays, with higher TEQ levels in the RTL-W1 EROD assay than in the DR-CALUX assay. This is possibly due to a more rapid metabolism in rat hepatocytes than in trout hepatocytes or to differences in sensitivities for the AhR agonists in the sludge. It was also demonstrated by GC/FID analysis that the sludge contained high concentrations of nitroaromatics. It is suggested that nitroaromatic metabolites, such as aromatic amines and nitroanilines, are possible candidates for the observed bioassay effects. It was also found that the AhR agonists in the sludge samples were volatile. CONCLUSIONS: The sludge contained fairly high concentrations of volatile AhR agonists. The increase of acid resistant AhR agonist after anaerobic digestion warrants further investigations of the chemical and toxic properties of these compounds and of the mechanisms behind this observation. RECOMMENDATION AND OUTLOOK: This study has pointed out the benefits of using different types of mechanism-specific bioassays when evaluating the change in toxicity by sludge treatment, in which measurement of dioxin-like activity can be a valuable tool. In order to study the recalcitrant properties of the compounds in the sludge using the DR-CALUX assay, the exposure time can be varied between 6 and 24 hours. The properties of the acid-resistant AhR agonists formed in the anaerobic treatment have to be investigated in order to choose the most appropriate method for sludge management.  相似文献   

8.
Bioremediation has proven successful in numerous applications to petroleum contaminated soils. However, questions remain as to the efficiency of bioremediation in lowering long-term soil toxicity. In the present study, the bioassays Spirotox, Microtox, Ostracodtoxkit F, umu-test with S-9 activation, and plant assays were applied, and compared to evaluate bioremediation processes in heavily petroleum contaminated soils. Six higher plant species (Secale cereale L., Lactuca sativa L., Zea mays L., Lepidium sativum L., Triticum vulgare L., Brassica oleracea L.) were used for bioassay tests based on seed germination and root elongation. The ecotoxicological analyses were made in DMSO/H2O and DCM/DMSO soil extracts. Soils were tested from two biopiles at the Czechowice oil refinery, Poland, that have been subjected to different bioremediation applications. In biopile 1 the active or engineered bioremediation process lasted four years, while biopile 2 was treated passively or non-engineered for eight months. The test species demonstrated varying sensitivity to soils from both biopiles. The effects on test organisms exposed to biopile 2 soils were several times higher compared to those in biopile 1 soils, which correlated with the soil contaminants concentration. Soil hydrocarbon concentrations indeed decreased an average of 81% in biopile 1, whereas in biopile 2 TPH/TPOC concentrations only decreased by 30% after eight months of bioremediation. The bioassays were presented to be sensitive indicators of soil quality and can be used to evaluate the quality of bioremediated soil. The study encourages the need to combine the bioassays with chemical monitoring for evaluation of the bioremediation effectiveness and assessing of the contaminated/remediated soils.  相似文献   

9.
The acute toxicity of 468 organic pollutants to planktonic crustaceans (Branchiopoda, Copepoda and Ostracoda) from pre-existing data was compared by means of statistical analysis and relative tolerance indices (Trel). A surrogate species commonly used in toxicity bioassays (Daphnia magna) showed toxicity levels--within one order of magnitude--similar to all other Cladocera species, at least for 82% of the chemicals studied. All neurotoxic insecticides except neonicotinoids, PCBs, organometallic compounds and PAHs are the most toxic substances to these organisms. Sensitivity levels among taxa were compared for individual chemicals as well as groups of chemicals with similar characteristics. Whilst there are marked differences in sensitivity among taxa and particular groups of chemicals, no consistent trends were found for freshwater and saltwater species in relation to the latter groups. No correlation between LC50 and size of these organisms was found other than by chance, making extrapolations based on allometric equations impossible.  相似文献   

10.
GOAL, SCOPE AND BACKGROUND: Lubricants based on renewable resources are an environmentally friendly alternative to petrochemical products due to their better ecotoxicological performance and their excellent biodegradability. To improve the technical performance of lubricants, and to reduce friction and wear, the use of additives is nowadays obligatory. The collaborative research center SFB 442 aims at developing environmentally acceptable lubricants that facilitate the avoidance of these additives by transferring their function to suitable coatings. For a complete assessment of the ecological performance of these newly developed lubricants, the whole life cycle including production, application as well as disposal and fate in the environment is studied. In the following study the focus was on the application and its influence on the environmental behavior of the lubricant. The application of lubricants leads, among other things, to the intake of metals due to abrasion from tools, work pieces or mechanical components. Previous examinations indicated a possible influence of metals on the toxicity of eluates prepared from used lubricants (Erlenkaemper et al. 2005). To clarify if the apparent toxicity of used lubricants solely results from the intake of metals, the extractability of these metals from the oil matrix is determined. By combining chemical analyses with bioassays, the bioavailability of metals that are present in the extract is estimated. To further investigate the relevance of metals on toxicity, toxic units (TU) were calculated and related to the results of the bioassays. Interactions between the metals were investigated with aqueous mixtures of metal chlorides and calculations based on the concept of concentration addition and independent action. METHODS: A lubricant mixture was applied to a tribological test bench that simulates real conditions of use and extremely short time load, respectively. Samples were taken at particular times, water soluble fractions (WSF) of these fluids were prepared and dilution series were investigated in several bioassays. Concentration of metals and total organic carbon (TOC) were determined in the eluates. TUs were calculated according to Sprague (1970) and mixture toxicity was calculated according to the concept of concentration addition (Loewe and Muischnek 1926) and independent action (Bliss 1939). RESULTS: Analyses of the metal content of the lubricant and the eluates clearly revealed the availability of the metals in the aqueous extracts. Especially copper, zinc, nickel and chromium were found and their concentrations increased during the time of use. The water extractable fraction, e.g., of copper, rose from 8.8% to 45.3% of the total content in the lubricant after 33.5 hours of use. Tests performed with the algal growth inhibition assay and the luminescence inhibition assay revealed the uptake or absorption by the organisms and, thus, the bioavailability of the metals. The calculation of TUs partly indicated a possible influence of the metals on ecotoxicity of the eluates. Copper reached concentrations equal to or higher than the EC50 value of copper chloride in the growth inhibition assays with algae and Ps. putida as well in the immobilization assay with daphnids. TUs for copper are also larger than 1 for the algal growth inhibition assay. The EL50 values indicated that the luminescence inhibition assay was the most sensitive test system, with values between 4.7% and 9.6%. While the toxicity towards algae and V. fischeri in the growth inhibition assay decreased until both organisms were no longer influenced by the exposure, the EL50 values for the D. magna immobilization assay and the Ps. putida growth inhibition assay decreased with the progressing use of the lubricant. The tested metal salt mixtures showed that Ps. putida, algae and daphnids are the most sensitive organisms with EC50 values below 1 mg/l. DISCUSSION: Although the intake of metals mainly occurred via abrasion of particles, the results revealed the availability of these metals in water. The availability varied for each of the four metals. For both the algal growth inhibition assay and the luminescence inhibition assay, an uptake or absorption of the metals could be demonstrated. The calculated TUs indicated an effect in some bioassays that was not verified in the test itself. The influence of copper on V. fischeri, for example, was not confirmed while the EL50 values for the daphnid bioassay decreased, meaning that the eluates became more toxic with progressing use of the lubricant. The calculations of mixture toxicity based on the concept of concentration addition demonstrated good correlations with the tested metal mixtures, but also a different sensitivity of the organisms. CONCLUSIONS: The results presented here reveal the availability of those metals in water that were taken in during the use of the lubricant in a tribological test bench and, thus, have the possibility of interacting with the organisms. The availability of the metals in the bioassays was proven by chemical analyses. The calculation of TUs and the corresponding EL50 values, however, indicate different availabilities of the metals. The results of the metal salt mixtures show good correlations with calculations of mixture toxicity based on concentration addition. Moreover, the varying sensitivity of the organisms when exposed to eluates or metal mixtures indicates a different bioavailability of the metals and/or the presence of other compounds that exert toxic action. RECOMMENDATIONS AND PERSPECTIVES: For further investigations, the organic oil matrix and its influence on the toxicity have to be taken into account. The toxicity of the eluates may not only be due to metals; additional effects could arise from changes in the lubricant itself.  相似文献   

11.
A suite of tests was conducted to evaluate and identify the cause or causes of toxicity in Passaic River sediments. Sediment toxicity was measured with three types of bioassays: a whole sediment bioassay with the marine amphipod, Ampelisca abdita, and interstitial water bioassays with A. abdita and the bioluminescent bacterium Vibrio fisheri (Microtox((R))). In addition, a Phase I Toxicity Identification Evaluation (TIE) was conducted to elucidate the cause of observed toxicity. Analytical concentrations of selected residues in whole sediment and interstitial water from the five sampling stations were considered in conjunction with the conclusions drawn from the toxicity tests and Phase I TIE results. Finally, a toxic units approach was used to evaluate the predicted toxicity of measured interstitial water residue concentrations. There was a lack of toxic response in the short-term interstitial water bioassays, indicating that oxidants, soluble forms of metals, and dissolved phase neutral organics were not likely toxicants. However, there was significant toxicity indicated by the whole sediment A. abidita bioassays. After 10 days, there was complete or near complete mortality in amphipods exposed to all of the sediment samples tested. Removal of interstitial water toxicity by filtration was common to all four stations that exhibited measurable initial toxicity. The observed toxicity characteristics are consistent with particle associated neutral organics. This conclusion is supported by toxicity removal via filtration, lack of toxicity in the Microtox((R)) assays, and the fact that whole sediments were more toxic than was interstitial water.  相似文献   

12.
Soil contamination can be one path for streams and groundwater contamination. As a complement of chemical analysis and total contaminants determination, bioassays can provide information on the bioavailable fraction of chemical compounds, focusing on the retention and habitat function of soils. In this study the evaluation of the toxicity of two soils from the abandoned Jales Mine (Portugal) regarded both functions. The buffer capacity of soils was tested with bioassays carried out using the cladoceran Daphnia magna and the marine bacteria Vibrio fischeri. The habitat function of soils was evaluated with the reproduction bioassay with the collembolan Folsomia candida. The Microtox solid-phase test was performed with V. fischeri using soil as test medium, and soil elutriates were extracted to perform the Microtox basic test, and an immobilization and reproduction bioassay with D. magna. The marine bacteria showed high sensitivity to the soil with low heavy metal content (JNC soil) and to JNC soil elutriates, while the soil with highest heavy metal content (JC soil) or soil elutriates exposure did not cause any toxic effect. In the bioassays with D. magna, organisms showed sensitivity to JNC and also to JC soil elutriates. Both mobilization and reproduction features were inhibited. The bioassay with F. candida did not reflect any influence of the contaminants on their reproduction. Although JNC soil presented lower heavy metal contents, elutriates showed different patterns of contamination when compared to JC soil and elutriates, which indicates different retention and buffer capacities between soils. Results obtained in this study underlined the sensitivity and importance of soil elutriate bioassays with aquatic organisms in the evaluation strategy in soil ERA processes.  相似文献   

13.
Lability of polycyclic aromatic hydrocarbons in the rhizosphere   总被引:2,自引:0,他引:2  
Cofield N  Banks MK  Schwab AP 《Chemosphere》2008,70(9):1644-1652
Remediation of soils containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) seldom results in complete removal of contaminants, but residual toxicity often is reduced. In this study, soil from a former manufactured gas plant site was treated for 12 months by phytoremediation and then tested for total PAHs, Tenax-TA extractable ("labile") PAHs, aqueous soluble PAHs (PAH(wp)) , and biotoxicity assessed by earthworms survival, nematode mortality, emergence of lettuce seedlings, and microbial respiration. Prior to phytoremediation, the soil had toxic impacts on all bioassays (except the nematodes), and 12 months of remediation decreased this response. Change in labile PAHs was a predictor for change in total PAH for 3- and 4-ring compounds but not for the 5- and 6-ring. Decreases in labile PAHs were correlated (r(2)>or=0.80) with toxicity in the bioassays except microbial respiration. PAH(wp) was correlated only with nematode toxicity prior to remediation but with none of the tests after remediation. Total PAHs were not correlated with any of the bioassay tests. Tenax-TA appears to have potential for predicting residual toxicity in remediated soils and is superior to total concentrations for that application.  相似文献   

14.
The results of four toxicity bioassays of selected anionic and nonionic surface active agents were presented. Three widely used anionic surfactants that belong to alkyl sulphates (AS), alkylbenzene sulphonates (LAS) and alkylpolyoxyethylene sulphates (AES) as well as nonionic surfactants: polyoxyethylene alkyl ethers (AE) and polyoxylethylene alkylphenyl ethers (APE) were tested. Three different toxicity assays to aquatic organisms: Physa acuta Draparnaud, Artemia salina and Raphidocelis subcapitata were applied. Additionally, the genotoxicity test with Bacillus subtilis M45 Rec- and H17 Rec+ strains was performed. The obtained results showed that none of the surfactants studied was genotoxic at the concentration 1000 mg l(-1). On the basis of toxicity tests to aquatic organisms all tested anionic surfactants were harmful (LC50 between 10 and 100 mg l(-1)), whereas nonionic ones were toxic (LC50 between 1 and 10 mg l(-1)) or even highly toxic (LC50 below 1 mg l(-1)). Moreover, the bigger was the molecular weight of the tested compound, the higher toxicity was observed.  相似文献   

15.
Methods developed with the cnidarian, Hydra attenuata (Pallas), have proven effective for screening acute toxicity in aqueous samples, whereas their use in revealing (sub)chronic toxic effects have had mitigated success. We therefore sought to explore manifestations of hydra mortality and abnormal morphological changes, as well as the reproductive capacity of hydras to further enhance the bioassay sensitivity and to assess (sub)chronic toxicity. These parameters were recorded following the onset of experiments after 8, 12 and 19-21 days of hydra exposure. Results obtained with potable waters (30 brands of bottled waters and artesian waters from 9 wells) showed chronic sublethal and lethal effects or reproduction rate inhibition for most samples. The effectiveness of the hydra toxicity test was demonstrated in comparison with other widely used bioassays. Our previous and present investigations suggest that hydra is a reliable and relevant test organism for the assessment of acute and chronic water toxicity.  相似文献   

16.
Adams GG  Klerks PL  Belanger SE  Dantin D 《Chemosphere》1999,39(12):2141-2157
Bioassays (7-day early life stage and 96 h acute bioassays) were conducted with the sheepshead minnow, Cyprinodon variegatus, to determine the toxicity of the dispersant Omni-Clean by itself and in combination with fuel oil no. 2. Performance characteristics of both bioassay types were also compared. Bioassays used oil by itself, dispersant by itself, and oil and dispersant in various ratios. Omni-Clean was less toxic than many other dispersants, and had a relatively small effect on individual biomass. Toxicities of the oil/dispersant combinations were generally higher than expected from the toxicities of the oil and dispersant by themselves, indicating a more-than-additive effect on toxicity. The comparison of performance characteristics between the 7-day and the 96-hour bioassays showed that the early life stage test is generally more sensitive, and has the added advantage of an additional and sensitive endpoint (fish biomass).  相似文献   

17.

This study examined the toxicity of irgarol, individually and in binary mixtures with three other pesticides (the fungicide chlorothalonil, and the herbicides atrazine and 2,4-D), to the marine phytoplankton species Dunaliella tertiolecta. Standard 96-h static algal bioassays were used to determine pesticide effects on population growth rate. Irgarol significantly inhibited D. tertiolecta growth rate at concentrations ≥ 0.27 μ g/L. Irgarol was significantly more toxic to D. tertiolecta than the other pesticides tested (irgarol 96 h EC50 = 0.7 μ g/L; chlorothalonil 96 h EC50 = 64 μ g/L; atrazine 96 h EC50 = 69 μ g/L; 2,4-D 96 h EC50 = 45,000 μ g/L). Irgarol in mixture with chlorothalonil exhibited synergistic toxicity to D. tertiolecta, with the mixture being approximately 1.5 times more toxic than the individual compounds. Irgarol and atrazine, both triazine herbicides, were additive in mixture. The toxicity threshold of 2,4-D was much greater than typical environmental levels and would not be expected to influence irgarol toxicity. Based on these interactions, overlap of certain pesticide applications in the coastal zone may increase the toxicological risk to resident phytoplankton populations.  相似文献   

18.
This work represents the first step to set up a toxicity testing procedure and to evaluate the sensitivity of the test microorganism to several classes of environmental pollutants. First, three different techniques were employed to standardise the microbial inoculum, then two different toxicity assessment protocols have been compared: Microtox and a dehydrogenase (DHase) activity inhibition test. The main goal was the optimisation of a microbial bioassay based on the dehydrogenase activity (DHase) inhibition in Pseudomonas fluorescens bacterial strain ATCC 13525. Triphenyl tetrazolium chloride (TTC) was used as electron acceptor and its reduction produces Triphenyl formazane (TPF). The P. fluorescens DHase inhibition bioassay was investigated for being a reliable and rapid method for assessing toxicity. The optimisation of the operating conditions resulted in a repeatable bioassay. Then, P. fluorescens and Vibrio fischeri sensitivity were firstly compared by testing Zn++, one of the reference compounds for Microtox test. In addition, other compounds (Ni++, Cd++, Cu++, phenol) were also tested with both bioassays. A high statistical significance of data was obtained with the logistic curve. The present work has demonstrated that P. fluorescens is as sensitive as Microtox culture (V. fischeri), for some of the metal ions. With reference to organic compounds, the lower sensitivity of P. fluorescens to phenol makes its use difficult in organic polluted samples.  相似文献   

19.
Yan XF  Xiao HM  Gong XD  Ju XH 《Chemosphere》2005,59(4):467-471
The DFT-B3LYP method, with the basis set 6-311G( * *), was employed to calculate the molecular geometries and electronic structures of 25 nitroaromatics. The acute toxicity (-lgEC(50)) of these compounds to the algae (Scenedesmus obliguus) along with hydrophobicity described by logK(OW), and two quantum chemical parameters-energy of the lowest unoccupied molecular orbital, E(LUMO), and the charge of the nitro group, [ForQ(NO2), were used to establish the quantitative structure-activity relationships (QSARs). For 18 mononitro derivatives, the hydrophobicity parameter logK(OW) could interpret the toxic mechanism successfully. Dinitro aromatic compounds were susceptible to be reduced to aniline for their electrophilic nature. Their toxicity was controlled mainly by electronic factors instead of hydrophobicity. The electronic parameters, E(LUMO) and Q(NO2), were used to yield the following model: -lg EC(50) = 3.746 - 25.053 E(LUMO) + 6.481 Q(NO2) (n=22, R=0.926, SE=0.206, F=56.854, P<0.001). The predicted toxic values using the above equation are in good agreement with the experimental values.  相似文献   

20.
GOAL, SCOPE AND BACKGROUND: Lake Shkodra/Skadar is the largest lake in the Balkans region and located on the border between Albania to the south and Montenegro to the north. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Shkodra/Skadar and its extensive associated wetlands are internationally recognised as a site of significance and importance (Ramsar site). In recent years, social and economic changes in both Albania and Montenegro have lead to unprecedented levels of urban and industrial effluent entering the lake. Of particular concern is the increasing input of toxic hydrophobic organic pollutants (HOPs) into the lake and the degree to which these compounds are available for uptake by aquatic biota. Semipermeable membrane devices (SPMDs) have been shown to sample the readily bioavailable fraction (dissolved phase) of waterborne HOPs and in doing so provide relevant data for exposure assessment. The aim of the current study was to use SPMD-based sampling in conjunction with appropriate bioassays and chemical analysis to identify readily bioavailable HOPs in the lake. METHODS: SPMDs were constructed and deployed at three sites in the Albanian sector and three sites in the Montenegrin sector of Lake Skadar/Shkodra for 21 days. Following the dialytic recovery of target analytes and size exclusion chromatographic clean-up, aliquots of SPMD samples were subjected to GC-MS scan analysis for major components, GC-MS SIM analysis for 16 priority pollutant polycyclic aromatic hydrocarbons (PP-PAHs) and assayed for EROD-inducing, estrogenic and mutagenic potential using rainbow trout liver cells (RTL-W1), the yeast estrogen screen (YES) and the Ames Test, respectively. RESULTS AND DISCUSSION: A total of 39 compounds were tentatively identified in SPMD samples from the six sampling sites. Alkylated PAHs were the most abundant and ubiquitous compounds present along with various sterols and sterol derivatives. Numerous other compounds remain unidentified. 15 of the 16 targeted PP-PAHs were present in samples from one or more of the sampling sites indicating these compounds are both readily bioavailable and widely distributed in Lake Shkodra/Skadar. Total PP-PAH concentrations ranged between 3991 ng/SPMD and 10695 ng/SPMD. Bioassays carried out on SPMD samples revealed significant EROD-inducing and estrogenic potential at five of the six sampling sites indicating toxicologically relevant compounds are readily available for uptake by resident aquatic biota. EROD-inducing potential was positively correlated with targeted PP-PAH concentration (r2 = 0.74). However, comparison of bioassay- and analytically-derived toxicity equivalents revealed targeted PP-PAHs were responsible for less than 0.06% of the total EROD-inducing potential. CONCLUSIONS AND OUTLOOK: The combination of SPMD-based sampling with appropriate bioassays and chemical analysis provided an effective tool for the identification of environmentally relevant waterborne pollutants in Lake Shkodra/Skadar. Our results show that toxicologically relevant HOPs including EROD-inducing and potentially estrogenic compounds are widely distributed in the lake and readily available for uptake by aquatic biota. Our results also suggest that alkylated PAHs rather than parent compounds may be of greater toxicological relevance in the lake. As anthropogenic influences continue to increase, SPMD-based sampling is expected to play a central role in future research concerned with the identification, monitoring and assessment of the risk posed by HOPs to Lake Shkodra/Skadar's aquatic biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号