首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rahman MM  Worch E 《Chemosphere》2005,61(10):1419-1426
While the pH effect on sorption equilibrium of weak acids on natural sorbents was investigated in a number of studies, less is known about the pH dependence of sorption kinetics. This paper investigates the impact of pH on sorption kinetics during the transport of some selected phenols through a sandy aquifer material. Breakthrough curves measured in column experiments were analyzed using a mass transfer based nonequilibrium model designated as dispersed flow, film and particle diffusion model (DF-FPDM). In this model, the rate limiting intraparticle diffusion is characterized by the mass transfer coefficient, kSaV, which can be determined from breakthrough curves by curve fitting. The experimental results indicate that the kSaV is pH-dependent and inversely correlated with the pH-dependent distribution coefficient, K(d,app). Regression equations are presented that may be used to estimate approximate values of intraparticle mass transfer coefficients on the basis of experimentally determined or LFER predicted distribution coefficients.  相似文献   

2.
3.
Use of animal manure is a main source of veterinary pharmaceuticals (VPs) in soil and groundwater through a series of migration processes. The sorption–desorption and transport of four commonly used VPs including trimethoprim (TMP), sulfapyridine, sulfameter, and sulfadimethoxine were investigated in three soil layers taken from an agricultural field in Chongming Island China and two types of aqueous solution (0.01 M CaCl2 solution and wastewater treatment plant effluent). Results from sorption–desorption experiments showed that the sorption behavior of selected VPs conformed to the Freundlich isotherm equation. TMP exhibited higher distribution coefficients (K d?=?6.73–9.21) than other sulfonamides (K d?=?0.03–0.47), indicating a much stronger adsorption capacity of TMP. The percentage of desorption for TMP in a range of 8–12 % is not so high to be considered significant. Low pH (<pK a of tested VPs) and rich soil organic matter (e.g., 0–20 cm soil sample) had a positive impact on sorption of VPs. Slightly lower distribution coefficients were obtained for VPs in wastewater treatment plant (WWTP) effluent, which suggested that dissolved organic matter might affect their sorption behavior. Column studies indicated that the transport of VPs in the soil column was mainly influenced by sorption capacity. The weakly adsorbed sulfonamides had a high recovery rate (63.6–98.0 %) in the leachate, while the recovery rate of TMP was only 4.2–10.4 %. The sulfonamides and TMP exhibited stronger retaining capacity in 20–80 cm and 0–20 cm soil samples, respectively. The transport of VPs was slightly higher in the columns leached by WWTP effluent than by CaCl2 solution (0.01 M) due to their sorption interactions.  相似文献   

4.
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments.  相似文献   

5.
The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-X-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0-100 μm from the exterior of the particle after 3 months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle.  相似文献   

6.
The transport of polycyclic aromatic hydrocarbons (PAH) in porous media in the presence of dissolved organic matter (DOM) was predicted with a transport bicontinuum model using independently obtained relationships to derive transport parameters for describing the effect of PAH binding to the DOM. The sorption constants of PAHs to soil and their binding constants to DOM were derived from basic correlations with K(ow) (indicator of hydrophobicity). The kinetic (rate) constants were derived from previously published correlations with K(p) (sorption constant). The independently obtained sorption and rate constants were corrected for binding to DOM and were used to predict the breakthrough curves (BTC) of contaminants in the presence and the absence of DOM. Column results confirmed the independently predicted BTC of PAHs in the presence of DOM that did not sorb to the solid phase, as well as the effect of DOM on the rate of the sorption and desorption processes. These findings confirm the ability to quantitatively describe how DOM facilitates transport of contaminants in the subsurface using independently derived parameters.  相似文献   

7.
Leachate from ash landfills is frequently enriched with As and Se but their off-site movement is not well understood. The attenuation potential of As and Se by soils surrounding selected landfills during leachate seepage was investigated in laboratory column studies using simulated ash leachate. As(III, V) and Se(IV, VI) concentrations as well as pH, flow rate, and a tracer were monitored in influent and effluent for up to 800 pore volumes followed by sequential desorption, extraction, and digestion of column segments. Column breakthrough curves (BTCs) were compared to predictions based on previously measured sorption isotherms. Early As(V) breakthrough and retarded As(III) breakthrough relative to predicted BTCs are indicative of oxidative transformation during seepage. For Se(VI), which exhibits linear sorption and the lowest sorption propensity, measured BTCs were predicted fairly well by equilibrium sorption isotherms, except for the early arrival of Se(IV) in one site soil, which in part, may be due to higher column pH values compared to batch isotherms. Most of the As and Se retained by soils during leaching was found to be strongly sorbed (60–90%) or irreversibly bound (10–40%) with <5% readily desorbable. Redox potential favoring transformation to the more sorptive valence states of As(V) and Se(IV) will invoke additional attenuation beyond equilibrium sorption-based predictions. With the exception of Se(IV) on one site soil, results indicate that attenuation by down-gradient soils of As and Se in ash landfill seepage will often be no less than what is predicted by equilibrium sorption capacity with further attenuation expected due to favorable redox transformation processes, thus mitigating contaminant plumes and associated risks.  相似文献   

8.
9.
Column outflow experiments operated at steady state flow conditions do not allow the identification of rate limited release processes. This requires an alternative experimental methodology. In this study, the aim was to apply such a methodology in order to identify and quantify effective release rates of heavy metals from granular wastes. Column experiments were conducted with demolition waste and municipal waste incineration (MSWI) bottom ash using different flow velocities and multiple flow interruptions. The effluent was analyzed for heavy metals, DOC, electrical conductivity and pH. The breakthrough-curves were inversely modeled with a numerical code based on the advection–dispersion equation with first order mass-transfer and nonlinear interaction terms. Chromium, Copper, Nickel and Arsenic are usually released under non-equilibrium conditions. DOC might play a role as carrier for those trace metals. By inverse simulations, generally good model fits are derived. Although some parameters are correlated and some model deficiencies can be revealed, we are able to deduce physically reasonable release-mass-transfer time scales. Applying forward simulations, the parameter space with equifinal parameter sets was delineated. The results demonstrate that the presented experimental design is capable of identifying and quantifying non-equilibrium conditions. They show also that the possibility of rate limited release must not be neglected in release and transport studies involving inorganic contaminants.  相似文献   

10.
Yolcubal I  Akyol NH 《Chemosphere》2008,73(8):1300-1307
The transport and fate of arsenate in carbonate-rich soil under alkaline conditions was investigated with multiple approaches combining batch, sequential extraction and column experiments as well as transport modeling studies. Batch experiments indicated that sorption isotherm was nonlinear over a wide range of concentration (0.1-200 mg L(-1)) examined. As(V) adsorption to the calcareous soil was initially fast but then continued at a slower rate, indicating the potential effect of rate-limited sorption on transport. Column experiments illustrated that transport of As(V) was significantly retarded compared to a non-reactive tracer. The degree of retardation decreased with increasing As(V) concentration. As(V) breakthrough curves exhibited nonideal transport behavior due to the coupled effects of nonlinear and rate-limited sorption on arsenate transport, which is consistent with the results of modeling studies. The contribution of nonlinear sorption to the arsenate retardation was negligible at low concentration but increased with increasing As(V) concentration. Sequential extraction results showed that nonspecifically sorbed (easily exchangeable, outer sphere complexes) fraction of arsenate is dominant with respect to the inner-sphere surface bound complexes of arsenate in the carbonate soil fraction, indicating high bioavailability and transport for arsenate in the carbonate-rich soils of which Fe and Al oxyhydroxide fractions are limited.  相似文献   

11.
This study was conducted to determine the significance of bromacil transport as a function of water and carbon content in soils and to explore the implications of neglecting sorption when making assessments of travel time of bromacil through the vadose zone. Equilibrium batch sorption tests were performed for loamy sand and sandy soil added with four different levels of powdered activated carbon (PAC) content (0, 0.01, 0.05, and 0.1%). Column experiments were also conducted at various water and carbon contents under steady-state flow conditions. The first set of column experiments was conducted in loamy sand containing 1.5% organic carbon under three different water contents (0.23, 0.32, and 0.41) to measure breakthrough curves (BTCs) of bromide and bromacil injected as a square pulse. In the second set of column experiments, BTCs of bromide and bromacil injected as a front were measured in saturated sandy columns at the four different PAC levels given above. Column breakthrough data were analyzed with both equilibrium and nonequilibrium (two-site) convection-dispersion equation (CDE) models to determine transport and sorption parameters under various water and carbon contents. Analysis with batch data indicated that neglect of the partition-related term in the calculation of solute velocity may lead to erroneous estimation of travel time of bromacil, i.e. an overestimation of the solute velocity by a factor of R. The column experiments showed that arrival time of the bromacil peak was larger than that of the bromide peak in soils, indicating that transport of bromacil was retarded relative to bromide in the observed conditions. Extent of bromacil retardation (R) increased with decreasing water content and increasing PAC content, supporting the importance of retardation in the estimation of travel time of bromacil even at small amounts of organic carbon for soils with lower water content.  相似文献   

12.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

13.
Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils.  相似文献   

14.
Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX (Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.  相似文献   

15.
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.  相似文献   

16.
Diffusion-retarded partitioning of pesticides with aggregated soils results in a time-dependent partition coefficient (Kd') which is different at equilibrium from the partition coefficient derived from conventional 24-h batch studies (Kd) measured on dispersed soil. An experiment was undertaken to determine the importance of Kd' for the prediction of pesticide concentrations in solutions bathing artificial soil aggregates and to determine whether diffusion theory could accurately predict the concentrations. Two clay soils were mixed with polyacrylamide to create artificial aggregates of 0.8, 1.4 and 1.7 cm diameter when dry. After saturation, the aggregates were immersed in solutions containing isoproturon or a mixture of isoproturon, chlorotoluron and triasulfuron. The decline with time of the pesticide concentrations in the bathing solution was monitored and the results were compared with predictions from a diffusion-based model. The effective diffusion coefficients of the compounds were obtained by either fitting the non-linear diffusion model to the data (D(ef)) or by independent calculations based on the properties of the compounds and of the aggregates (D(ec)). The diffusion model was able to predict the temporal variation in pesticide concentrations in the bathing solution reasonably well whether D(ef) or D(ec) values were used. However, equilibrium concentrations in solution were sometimes overestimated due to increased sorption with time at the particle scale. Overall, the ratio between D(ef) and D(ec) ranged from 0.23 to 0.95 which was a reasonable variation when compared to the range of aggregate sizes used in the experiments and of the Kd values of the compounds.  相似文献   

17.
Transport of hexanal and styrene in polystyrene foam (PSF) and oriented strand board (OSB) was characterized. A microbalance was used to measure sorption/desorption kinetics and equilibrium data. While styrene transport in PSF can be described by Fickian diffusion with a symmetrical and reversible sorption/desorption process, hexanal transport in both PSF and OSB exhibited significant hysteresis, with desorption being much slower than sorption. A porous media diffusion model that assumes instantaneous local equilibrium governed by a nonlinear Freundlich isotherm was found to explain the hysteresis in hexanal transport. A new nonlinear sorption and porous diffusion emissions model was, therefore, developed and partially validated using independent chamber data. The results were also compared to the more conventional linear Fickian-diffusion emissions model. While the linear emissions model predicts styrene emissions from PSF with reasonable accuracy, it substantially underestimates the rate of hexanal emissions from OSB. Although further research and more rigorous validation is needed, the new nonlinear emissions model holds promise for predicting emissions of polar VOCs such as hexanal from porous building materials.  相似文献   

18.
Batty LC  Younger PL 《Chemosphere》2007,66(1):158-164
The long term effectiveness of compost-based wetland systems treating net-acidic mine waters is reliant upon a continuing supply of decomposed organic matter which provides the basic foodstock for sulphate reducing bacteria. The annual turnover of wetland vegetation within these systems has been suggested to be the primary source for this material once the original substrate has been consumed. This study aimed to determine whether plant litter (of Common Reed, Phragmites australis) decomposition rates and release of metals and nutrients were affected by pH using controlled experiments under laboratory conditions. Loss of plant biomass was found to be unaffected by pH (3.0-6.5) suggesting that plant litter could be an important source of organic molecules for bacterial populations even under acidic conditions. The decomposing plant litter also acted as a focus for the precipitation of Fe oxides and sorption of Zn thereby acting as a short-term sink for these contaminants. This has important implications for geochemical cycling within the wetland system and potential transport out of the system. The essential nutrients (K and Mg) released from plant litter were affected by pH which could be important in nutrient availability for re-use by vegetation and other organisms within the system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号