首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
通过絮凝-沉淀法对采油废水进行深度处理,类比聚合氯化铝(PAC)、聚合氯化铝铁(PAFC)、聚合硫酸铝(PAS)、聚合硫酸铝铁(PAFS)、复合高分子絮凝剂(KD-11C)和生物絮凝剂6种絮凝剂对采油废水中含油量和悬浮固体(SS)含量的去除效果,通过单因素试验探究絮凝剂投加量、助凝剂投加量、温度、pH值和沉淀时间对絮凝效果的影响,并通过正交试验确定各因素影响程度的次序及最佳絮凝处理条件。结果表明:复合高分子絮凝剂絮凝效果最好;影响絮凝效果各因素的次序为温度pH值絮凝剂投加量助凝剂投加量沉淀时间;最佳絮凝处理条件是絮凝剂KD-11C投加量为50mg/L、助凝剂PAM投加量为3mg/L、温度为60℃、pH值为7.5、沉淀时间为30min。  相似文献   

2.
采用光学散射絮凝度测定仪(IPDA2000型)研究3种典型混凝剂(PAC、PFS、FeCl_3)在不同pH值和混凝剂投加量下处理带正电胶粒时的絮体絮凝特性、絮体强度以及破碎后恢复性能。结果表明:过低和过高的pH值及投加量都不利于絮体形成;PAC投加量50 mg/L(pH=8.5),PFS投加量50 mg/L(pH=8),FeCl_3投加量30 mg/L(pH=7)条件下,絮凝速度最快,絮体尺寸最大,且FeCl_3絮体的稳定尺寸为PAC和PFS的1.5倍,絮体形成速度更快,达到最优条件需要碱度更低。投药量是影响絮体强度和恢复性能的重要因素,随着投加量增加,FeCl_3、PFS、PAC絮体强度增大,但恢复性能降低;同条件下FeCl_3的恢复因子为PFS和PAC的0.5倍。  相似文献   

3.
王昶  张宗鹏  曾明 《环境工程》2015,33(12):49-53
采用均相Fenton高级氧化技术对苯甲酸废水进行降解,考察了p H值、H2O2投加量、Fe~(2+)的用量、苯甲酸溶液的初始浓度等因素对苯甲酸降解的影响。结果表明:在室温条件下,最佳初始pH=3,H_2O_2最佳的经济投加量(Qth)为12.3 mmol/L,Fe~(2+)最佳投加量为0.41 mmol/L(即c(H_2O_2)∶c(Fe~(2+))=30∶1);经60 min反应后,100 mg/L苯甲酸基本可完全去除,TOC去除率也可达41.9%以上;当苯甲酸浓度为200 mg/L时,TOC去除率最大,可达45.4%;当苯甲酸浓度高于200 mg/L时,可以采取分批投加H_2O_2的方式以获得较高的去除率。  相似文献   

4.
通过中和沉淀法和吸附法分别处理模拟锌离子废水,考察了碱用量、锌离子初始浓度以及分子筛用量对处理效果的影响,采用红外光谱表征了使用前后的分子筛。并在最佳碱用量和分子筛投加量条件下,采用中和沉淀-吸附法联合处理化学反应焓变测定过程中产生的实验室废水。结果表明:当n(OH-)/n(Zn~(2+))为2时,中和沉淀法处理模拟锌离子废水的效果最好,出水pH为6.8;当Zn~(2+)初始浓度为10~40 mg/L且分子筛投加量为50 g/L时,剩余Zn~(2+)浓度降低为1.0~3.0 mg/L,分子筛质量损失率为0.5%~3.8%;溶液中的Zn~(2+)进入了分子筛内部并形成了新的化学键;中和沉淀-吸附工艺在最优条件下的出水中的Zn~(2+)浓度、Cu~(2+)浓度、pH值分别为2.4mg/L、0.2 mg/L和6.8,满足GB 8978—1996二级排放标准。  相似文献   

5.
通过单因素试验考察了聚合氯化铝(PAC)、聚合硫酸铁(PFS)、聚合氯化铝铁(PAFC)对餐厨废水生化处理出水中COD、TP的去除效果,并确定了絮凝沉淀最佳工艺条件:最优絮凝剂为PFS,最佳投加量为450 mg/L,絮凝反应时间为30 min,PAM投加量为0.6 mg/L,PAM投加时间为距离PFS投加后至少l min.在最佳工艺条件下,COD、TP平均去除率可分别达36%、83%,此时絮体体积比为13%.  相似文献   

6.
采用后继混凝沉淀的A/O工艺对含酚、氰的焦化废水进行了处理,运行结果表明:当A段停留时间为7h,DO低于0.3 mg/L;O段停留时间为7 h,DO为3.5 mg/L;絮凝阶段聚合氯化铝铁(PACF)投加量为1012.3mg/L,聚丙烯酰氨(PAM)投加量为4.2 mg/L,絮凝沉降时间为1.5 h时,废水中酚含量从288-680 mg/L降至1.0 mg/L以下,氰化物含量从0.73-11.3 mg/L降至0.5 mg/L,达到了《污水综合排放标准》(GB8978-1996)的二级排放标准。  相似文献   

7.
为了探讨微砂在磁沉降快速除污工艺中的应用,设计了微砂和聚合氯化铝(PAC)的最佳组合试验,分析影响微砂在磁絮凝中絮凝效果的因素。结果表明:当微砂投加量为300 mg/L,PAC投加量为80 mg/L,磁场强度为300 mT,pH为6时,微砂在磁絮凝中具有最佳处理效果,对TSS、COD和TP去除率分别达到最大值93.66%、74.29%和89.10%。同时在投加微砂和磁沉降的共同作用下,水力停留时间仅为8 min。  相似文献   

8.
以高浓度铜镍废水为研究对象,分别采用传统絮凝和加载絮凝工艺,探究了聚合氯化铝(PAC)投加量、阴离子聚丙烯酰胺(APAM)投加量、回流污泥量对出水效果、污泥的脱水性能和沉降性能的影响。结果表明:加载工艺比传统工艺处理效果更好,更节省药剂投加量,对药剂投加量的波动变化适应性更强;PAC的投加量对同种工艺下污泥CST值的影响明显,传统和加载絮凝两种工艺中,不同PAC投加量对应的CST差值最大分别达到9.4 s和8.6 s;不同APAM投加量下,加载工艺产生的污泥CST值总体比传统工艺的小8~9 s,表明加载工艺的污泥脱水性能普遍优于传统工艺;药剂投加量相同时,加载絮凝工艺得到污泥的沉降性能比传统工艺更好;结合出水效果、污泥脱水性能、污泥沉降性能和处理成本,确定采用加载工艺处理铜镍废水,其最佳工艺条件为:PAC=20 mg/L,APAM=4 mg/L,污泥回流量=100 mL。  相似文献   

9.
针对河北某矿矿井水岩粉含量较高(原水浊度为340 NTU)、预沉后水质发白等问题,采用二次混凝+沉淀工艺进行处理,研究了混凝剂、助凝剂、投加方式与投加量对处理效果的影响。结果表明:最佳混凝剂为PAC,最佳助凝剂为阴离子型PAM;最佳投加方式为一次混凝投加100mg/L PAC、二次混凝投加20 mg/L PAC与0.6 mg/L PAM,这一加药条件下的沉淀出水浊度为4.6 NTU,浊度去除率达到98.7%,PAC投加量较一次混凝沉淀减少29.4%;采用二次混凝+沉淀工艺能减少药剂投加量并提高悬浮物去除效率。  相似文献   

10.
以四钛酸钾晶须作为处理材料去除废水中的铀,考察了四钛酸钾晶须投加量、溶液pH值、铀初始质量浓度、反应时间和温度等因素对去除效果的影响。结果表明:在温度为25℃、pH=8.0、反应时间为120 min的条件下,四钛酸钾晶须对初始质量浓度为100 mg/L的含铀废水中铀去除率达97.4%。在此基础上开展零价铁和四钛酸钾晶须联合处理含铀废水研究,二者在实验所设的8种投加量情况下均可将初始铀浓度为100 mg/L的废水降至GB 23727—2009《铀矿冶辐射防护和环境保护规定》规定值0.05 mg/L以下。在增加投加量的基础上,二者联合处理,可使铀浓度约为50 mg/L的实际铀矿山废水中铀含量降至0.1 mg/L左右,去除率达99.8%。  相似文献   

11.
H2O2-Fe2+法处理精喹禾灵生产废水的研究   总被引:1,自引:0,他引:1  
采用酸析法先对精喹禾灵生产废水进行预处理然后用H_2O_2-Fe_~(2 )法进行催化氧化,研究了H_2O_2投加量及投加方式、Fe~(2 )投加量、反应时间对处理效果的影响。结果表明,在H_2O_2投加量为12g/L,分批投加,Fe~(2 )投加量为300mg/L,反应时间为90min、pH=2~4的条件下,氧化,出水经活性炭吸附后废水的COD和色度的去除率分别可达94.5%和96.7%,用石灰乳中和后可直接排放,达到了国家二级排放标准(GB8978-1996)。  相似文献   

12.
为高效去除饮用水中腐殖酸,研究以腐殖酸配水为研究对象,聚合氯化铝(PAC)为絮凝剂,沸石粉为助凝剂,着重考察了PAC与沸石粉单独及两者联合使用时对腐殖酸溶液的去除效能,结果表明:PAC可有效降低腐殖酸的浓度,在1 L水样中,当PAC投量为110 mg/L时,腐殖酸去除率达到89.13%,出水浊度为0.176NTU;对于PAC混凝而言,沸石粉的投加起到吸附、助凝、助沉、除浊的混凝效果,当沸石粉投量为5 mg/L,PAC投量降至40 mg/L时,出水浊度由1.75 NTU降至0.333 NTU,腐殖酸去除率由26.16%提高至84.38%,沸石粉通过助凝作用,可以显著地改善PAC混凝对腐殖酸的去除效能,同时亦可有效减少PAC的投加量。  相似文献   

13.
研究了黏土吸附-絮凝沉淀联用方法对水中亚甲基蓝和罗丹明B的去除效果。探讨了黏土矿物与絮凝剂类型、作用时间、黏土矿物投加量和染料初始浓度对处理效果的影响。结果表明结合累托石对2种染料良好的吸附效果和聚合氯化铝(PAC)/聚丙烯酰胺(PAM)的絮凝沉淀作用,该联用方法可以简单、快速、高效地去除2种染料。亚甲基蓝和罗丹明B的初始浓度为10 mg/L,吸附时间6min,累托石1 g/L,PAC 200 mg/L,PAM 20 mg/L条件下,亚甲基蓝和罗丹明B的去除率分别达到99.2%和96.9%。  相似文献   

14.
以深圳市发生水华的某景观湖水为研究对象,研究过氧化氢(H2O2)与硫酸铜(以Cu2+计)组合投加对水样藻类生物量的控制效果及对水样溶解氧、pH、浊度的影响。结果表明:组合投药能显著抑制藻类生长,在处理第7天,组合投药A组(20 mg/L H2O2+0.2 mg/L Cu2+)、B组(10 mg/L H2O2+0.4 mg/L Cu2+)、C组(5 mg/L H2O2+0.8 mg/L Cu2+)的Chl a浓度分别降至对照组的58%、30%、18%。投加过氧化氢有助于增强硫酸铜的抑藻效果,A组Chl a浓度在第1天降至49μg/L,显著低于单独投加0.2 mg/L Cu2+的处理组(81μg/L)。投加过氧化氢有助于降低Cu2+投加量,B组抑藻效果与单独投加0.6 mg/L Cu2+处理组第7天数值相同。组合投药使水样溶解氧、pH值、浊度均显著变化,第7天时,溶解氧由17.5 mg/L降至8.7~13.3 mg/L,pH值由10.0降至8.5~9.2,浊度由200 NTU降至84~94 NTU。  相似文献   

15.
为解决工业园区电镀废水处理后水质未能达标排放的问题,文章采用混凝沉淀—UF/超滤工艺取代原沙滤工段,进行了方案比选,研究了各改造工段的最佳运行参数和经济技术可行性。结果表明,当混凝段PAC投加量为10 mg/L,PAM投加量为70 mg/L,UF工段运行压力0.25 MPa,透过率为0.8时,出水中Ni~(2+)、Cu~(2+)、总Cr、Cr~(6+)浓度分别为0.35、0.38、0.42和0.22 mg/L,改造成本仅增加0.8元/t;处理后水质符合广东省地方污染物排放和国家电镀废水处理标准中最严要求,改造工艺技术可行性较好。  相似文献   

16.
将废水以碱金属氢氧化物中和,并用含一种已知净化剂的碱金属碳酸盐溶液调节pH至9.0。再补加氢氧化物,调节pH至9.6~9.8。使沉淀沉积或选择过滤。处理过的废水可使其通过阳离子交换柱进一步净化。实例:将分别含Fe~(2+)、Ni~(2+)和Cr~(3+)83、41和22mg/L的废水(pH2.5),与含氢氧化钠100g/L的溶液和含碳酸钠50g/L的溶液混合,得pH8的溶液。阳离子浓度分别降到20、35和1.5mg/L。将氢氧化钙悬浮液按50g/L浓度加至废水中,得pH9.5~9.8。澄清和沉降4h  相似文献   

17.
研究沉淀-Fenton氧化对甲基硫菌灵生产废水的预处理,考察SCN^-和CODcr的去除效果。先加入Cu-SO4和Na2S2O3对SCN^-进行沉淀,考察CuSO4和Na2S2O3加入量对CODcr去除率的影响;对沉淀后水样进行Fenton氧化,通过改变pH值、H2O2浓度、Fe^2+浓度、反应时间等得出该农药废水在常温下的最佳操作条件。实验结果表明,经过沉淀处理后的废水,pH值为4、H2O2投加量为6~7 g/L、Fe^2+投加量为1.2~1.5 g/L,氧化时间为2~4 h,CODcr浓度从12 000 mg/L降至3 600 mg/L,总去除率达到了70%。  相似文献   

18.
强化絮凝法处理含油浮渣的实验研究   总被引:1,自引:0,他引:1  
针对炼油污水厂浮选池浮渣的性质和特点,采用强化絮凝法对浮渣进行了实验研究.结果表明:强化絮凝更适合浮渣脱水,在KMnO4投加量为700 mg/L,FeCl3投加量为3 g/L,PAC投加量为700 mg/L,pH值为9,CPAM投加量为190 mg/L的条件下,浮渣含水率降低为78.48%,比单独使用CPAM降低5.38%,浮渣减量化明显,可为当前单独使用CPAM处理含油浮渣的污水厂进行升级改造提供参考.  相似文献   

19.
某工业园区综合废水处理厂设计规模5.0×104m3/d,原设计出水执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准,需将出水标准提高到一级A排放标准.分别采用混凝沉淀法和高级氧化法深度处理二级生化出水.小试试验结果表明:二级生化出水CODcr在62~75 mg/L左右,PAC、Al2(SO4)3及PFS三种絮凝沉淀药剂处理出水CODcr去除效果均不明显,不能稳定达到一级A排放标准.芬顿催化氧化的pH=5,FeSO4+H2O2投加量为(200+100)mg/L;臭氧氧化的O3投加量33 mg/L,其出水CODcr均能达到一级A排放标准.  相似文献   

20.
加载絮凝沉降技术处理炼油含盐废水研究   总被引:1,自引:0,他引:1  
文章采用“加载絮凝沉降技术”对炼油厂含盐废水进行深度处理。研究不同因素对实验结果的影响。确定了最佳反应条件:pH为7.5,温度为25℃,沉淀时间为3min,PAC投加量为250mg/L,PAM投加量为3mg/L,加载物按1%投加。最佳条件下CODcr,值可由120mg/L降为54.9mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号