首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The adsorption properties and mechanisms of a cationic-polymer/bentonite complex (EPI-DMA/bentonite), prepared from polyepicholorohydrin-dimethylamine and bentonite, for non-ionic dyes (Disperse Blue SBL and Vat Scarlet R) and anionic dyes (Reactive Violet K-3R and Acid Dark Blue 2G) were investigated in this study. The solution pH, presence of salt and surfactant can significantly affect the dye removal efficiency. The equilibrium data were analyzed using the Langmuir and Freundlich models. The Langmuir model is the most suitable to describe non-ionic dye adsorption, but for anionic dyes the Freundlich model is best. The kinetic data for the adsorption of different dyes were analyzed using pseudo first- and second-order equations, and the experimental data conformed to the pseudo second-order kinetic model better. The possibility of intraparticle diffusion was also examined by using the intraparticle diffusion equation. The single-stage batch adsorber design for the adsorption of both types of dyes onto EPI-DMA/bentonite was studied based on the Langmuir isotherm model for non-ionic dyes and the Freundlich isotherm model for anionic dyes. The results showed that the required amount of EPI-DMA/bentonite for 95% dye removal in 5 L dye solution with a concentration of 50 mg/L is 378.0 g for DB SBL, 126.5 g for VS R, 9.7 g for RV K-3R and 15.5 g for ADB 2G.  相似文献   

2.
In the present work, the leaves of Azadirachta indica (locally known as the Neem tree) in the form of a powder were investigated as a biosorbent of dyes taking aqueous Congo Red solution as a model system. The sorbent was made from mature Neem leaves and was investigated in a batch reactor under variable system parameters such as concentration of the aqueous dye solution, agitation time, adsorbent amount, pH, and temperature. An amount of 0.6 g of the Neem leaf powder (NLP) per litre could remove 52.0-99.0% of the dye from an aqueous solution of concentration 2.87 x 10(-2) mmol l(-1) with the agitation time increasing from 60 to 300 min. The interactions were tested with respect to both pseudo first-order and second-order reaction kinetics; the latter was found to be more suitable. Considerable intra-particle diffusion was found to occur simultaneously. The sorption process was in conformity with Langmuir and Freundlich isotherms yielding values of the adsorption coefficients in the following ranges: Freundlich n: 0.12-0.19, Kf: 0.1039-0.2648 L g(-1); Langmuir qm: 41.24-128.26 g kg(-1), b: 443.3-1898.0 l mmol(-1), which supported favourable adsorption. The Langmuir monolayer capacity (qm) was high and the values of the coefficient b indicated the equilibrium, dye + NLP = dye...NLP being shifted overwhelmingly towards adsorption. Thermodynamically, the sorption process was exothermic with an average heat of adsorption of -12.75 kJ mol(-1). The spontaneity of the sorption process was also confirmed by the favourable values of Gibbs energy (mean values: -1.09 to -1.81 kJ mol(-1)) and entropy of adsorption (range: -18.97 to -56.32 J mol(-1)K(-1)). The results point to the effectiveness of the Neem leaf powder as a biosorbent for removing dyes like Congo Red from water.  相似文献   

3.
Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.  相似文献   

4.
The harvested mycelial waste of Trichoderma harzianum was used as an adsorbent for the removal of rhodamine 6G and was studied in batch mode. The effects of agitation time and initial dye concentration, adsorbent dosage and pH were examined. The study revealed that the amount of dye adsorbed (mgg(-1)) increased with increase in agitation time and reached equilibrium after 120 min, for dye concentrations of 10-50 mg L(-1). The adsorbent dosage of 1.0 g/50 mL and pH of 8.0 were found to be optimum for maximum dye removal. The batch mode adsorption data followed both the Langmuir and Freundlich isotherms. The pseudo first- and second-order rate kinetics were applied to the adsorbent system. The adsorption kinetics of rhodamine 6G showed that the pseudo-second-order kinetic model provided the best correlation of the equilibrium data. The study implies that it is possible to develop a dye removal system by using T. harzianum biomass, which occurs as sludge in waste stream of fermentation industries.  相似文献   

5.
The fly ash treated by H2SO4 was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy (ΔH0) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption.  相似文献   

6.
The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as δ-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204 mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the d-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern.  相似文献   

7.
Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate–adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.  相似文献   

8.
The aim of this research was to pillar the bentonite clay (Bt) with polyhydroxy tin chloride. The synthesized Tin-pillared interlayer clay (Sn-PILC) was characterized using X-ray diffraction (XRD), Fourier Transform Infrared spectra (FT-IR), Brunauer-Emmer Teller (BET) analysis, Thermogravimetric analysis (TGA), and Scanning Electron Microscopy (SEM). Adsorption capacity of raw-Bt and tin pillared interlayer clay (Sn-PILC) was examined for two dyes, namely, Malachite Green (MG) and Chrysoidine-Y (CY) from their aqueous solutions. The effects of physicochemical parameters like solution pH, dose, and dye concentration were investigated. The maximum adsorption efficiency at equilibrium dye concentration for Sn-PILC was 66.229 mg g–1 for MG and 63.792 mg g–1 for CY. Sn-PILC obeyed Langmuir isotherm for both the dyes whereas raw-Bt followed Freundlich isotherm. On the other hand, both adsorbents followed PFO as well as PSO kinetic model, indicating physisorption assisted by chemisorption. Thermodynamic studies were performed to determine the adsorption behavior of Sn-PILC for both the dyes. Regeneration studies revealed 80% efficiency up-to five adsorption-desorption cycles.  相似文献   

9.
The macroalga Caulerpa lentillifera was found to have adsorption capacity for a basic dye, Astrazon Blue FGRL. For the whole range of concentrations employed in this work (20-1280 mgl(-1)), the adsorption reached equilibrium within the first hour. The kinetic data corresponded well with the pseudo second-order kinetic model where the rate constants decreased as initial dye concentrations increased. At low dye concentrations (20-80 mgl(-1)), an increase in the adsorbent dosage resulted in a higher removal percentage of the dye, but a lower amount of dye adsorbed per unit mass (q). The adsorption isotherm followed both the Langmuir and Freundlich models within the temperature range employed in this work (18-70 degrees C). The highest maximum adsorption capacity (q(m)) was obtained at 50 degrees C. The enthalpy of adsorption was estimated at 14.87 kJmol(-1) suggesting a chemical adsorption mechanism.  相似文献   

10.
In this paper, Loofa egyptiaca (LE), an agricultural plant cultivated in Egypt, was used to prepare low-cost activated carbon (LEC1 and LEC2) adsorbents. The adsorbents (LE, LEC1 and LEC2) were evaluated for their ability to remove direct blue 106 dye from aqueous solutions. Batch mode experiments were conducted using various parameters such as pH, contact time, dye concentration and adsorbent concentration. The surface chemistry of LE, LEC1 and LEC2 was analyzed by scanning electron microscopy (SEM). The experimental data were examined using Langmuir, Freundlich, Temkin and Harkins–Jura isotherms. The results showed that the adsorption of direct blue 106 was maximal at the lowest value of pH (pH = 2). Removal efficiency was increased with an increase in dye concentration and a decrease in amount of adsorbent. Maximum adsorption capacity was found to be 57.14, 63.3 and 73.53 mg/g for LE, LEC1 and LEC2 respectively. Kinetics were also investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The experimental data fitted very well with the pseudo-first-order and pseudo-second-order kinetic models. The results indicate that LE, LEC1 and LEC2 could be employed as adsorbents for the removal of direct blue dye from aqueous solutions.  相似文献   

11.
Removal of chromium (VI) from aqueous solution using walnut hull   总被引:2,自引:0,他引:2  
In this study, removal of chromium (VI) from aqueous solution by walnut hull (a local low-cost adsorbent) was studied. The extent of adsorption was investigated as a function of solution pH, contact time, adsorbent and adsorbate concentration, reaction temperature and supporting electrolyte (sodium chloride). The Cr (VI) removal was pH-dependent, reaching a maximum (97.3%) at pH 1.0. The kinetic experimental data were fitted to the first-order, modified Freundlich, intraparticle diffusion and Elovich models and the corresponding parameters were obtained. A 102.78 kJ/mol Ea (activation energy) for the reaction of chromium (VI) adsorption onto walnut indicated that the rate-limiting step in this case might be a chemically controlled process. Both the Langmuir and Freundlich isotherms were suitable for describing the biosorption of chromium (VI) onto walnut hull. The uptake of chromium (VI) per weight of adsorbent increased with increasing initial chromium (VI) concentration up to 240-480 mg/L, and decreased sharply with increasing adsorbent concentration ranging from 1.0 to 5.0 g/L. An increase in sodium chloride (as supporting electrolyte) concentration was found to induce a negative effect while an increase in temperature was found to give rise to a positive effect on the chromium (VI) adsorption process. Compared to the various other adsorbents reported in the literature, the walnut hull in this study shows very good promise for practical applicability.  相似文献   

12.
In the present work, the adsorption capacity of anthill was investigated as a low‐cost adsorbent to remove the heavy metal ions, lead (II) ion (Pb2+), and zinc (II) ion (Zn2+) from an aqueous solution. The equilibrium adsorption isotherms of the heavy metal ions were investigated under batch process. For the study we examined the effect of the solution's pH and the initial cations concentrations on the adsorption process under a fixed contact time and temperature. The anthill sample was characterized using a scanning electron microscope (SEM), X‐ray fluorescence (XRF), and Fourier transform infrared (FTIR) techniques. From the SEM analysis, structural change in the adsorbent was a result of heavy metals adsorption. Based on the XRF analysis, the main composition of the anthill sample was silica (SiO2), alumina (Al2O3), and zirconia (ZrO2). The change in the peaks of the spectra before and after adsorption indicated that there was active participation of surface functional groups during the adsorption process. The experimental data obtained were analyzed using 2‐ and 3‐parameter isotherm models. The isotherm data fitted very well to the 3‐parameter Radke–Prausnitz model. It was noted that Pb2+ and Zn2+ can be effectively removed from aqueous solution using anthill as an adsorbent.  相似文献   

13.
Adsorption of malachite green (MG) from aqueous solution onto treated ginger waste (TGW) was investigated by batch and column methods. The effect of various factors such as initial dye concentration, contact time, pH and temperature were studied. The maximum adsorption of MG was observed at pH 9. Langmuir and Freundlich isotherms were employed to describe the MG adsorption equilibrium. The monolayer adsorption capacities were found to be 84.03, 163.9 and 188.6 mg/g at 30, 40 and 50 °C, respectively. The values of thermodynamic parameters like ΔG°, ΔH° and ΔS° indicated that adsorption was spontaneous and endothermic in nature. The pseudo second order kinetic model fitted well in correlation to the experimental results. Rechienberg's equation was employed to determine the mechanism of adsorption. The results indicated that film diffusion was a major mode of adsorption. The breakthrough capacities were also investigated.  相似文献   

14.
以咪唑银配位聚合物{Ag(im)}n作吸附剂,对偶氮染料刚果红和甲基橙的吸附进行了研究,结果表明:刚果红的最佳吸附条件是吸附剂加入量为31.5mg,温度为30℃,pH值为3,吸附时间为70min,最高染料脱除率为90。7%;甲基橙的最佳吸附条件是吸附剂加入量为36.7mg,温度为30℃,pH值为2,吸附时间为50min,最高染料脱除率为58.3%。  相似文献   

15.
A laboratory study was conducted to investigate the efficiency of hydroxyapatite (HAP) towards removal of nitrate from synthetic nitrate solution. In the present research HAP synthesized from egg-shell was characterized using SEM, XRD, FTIR and TGA–DSC. The removal of nitrate was 96% under neutral conditions, using 0.3 g of adsorbent in 100 mL of nitrate solution having an initial concentration of 100 mg/L. An adsorption kinetic study revealed that the adsorption process followed first order kinetics. Adsorption data were fitted to a linearly transformed Langmuir isotherm with correlation coefficient (R2) > 0.98. Thermodynamic parameters were also calculated to study the effect of temperature on the removal process. In order to understand the adsorption type, equilibrium data were tested with the Dubinin–Radushkevich isotherm. The process was rapid and equilibrium was established within the first 40 min.  相似文献   

16.
Natural, acid and base modified kaolin clays were studied for the sake of phenol and 4-chlorophenol removal from aqueous environments and their application to real ground and industrial wastewater samples. Scanning electron microscope (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD), Thermo Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA), and Surface area analysis were employed for characterization of the adsorbents microstructure. Operating factors such as adsorbent dose, solution pH, initial phenol concentration, and contact time were studied. The experimental data displayed that the increase of the adsorbent dose, contact time, and pH value from 2 to 7 increases the efficiency of the removal process. Optimal conditions for phenolic removal were; contact time of 300 min, primary phenol solution of 25 mg/L, pH 7 and 2.5 g/L as an appropriate adsorbent dose using crude (natural), acid modified and base modified kaolin clays. The higher phenolic removal efficiencies were obtained at 5 mg/L as 90, 97, 96.2%, respectively, for the adsorbents in the previously mentioned order. The adsorption capacity in the removal of phenol and 4-chlorophenol were 7.481 and 4.195, 8.2942 and 3.211, and 8.05185 and 18.565 mg/g, respectively, for the adsorbents in the same mentioned order. The adsorption equilibrium data were fitted and analyzed with four isotherm models, namely, Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm equations. The adsorption process of phenol on studied adsorbents was exothermic, spontaneous and thermodynamically favorable proved by the negative values of their thermodynamic parameters ΔH° and ΔG°. The correlation coefficient (R2) for all concentrations was higher than 0.94, which indicates that in the studied system, the data suitably fit the first-order kinetics. The % desorption capacity was amounted to 96%, 91.11%, and 87.06% of adsorbed phenol, respectively, for the adsorbents in the previous order using 0.1N NaOH and 10% V/V ethanol solutions as eluents at 25°C, indicating the reusability of the adsorbents. Kaolin and its modified forms can be introduced as eco-friendly and low-cost adsorbents in water remediation implementation.  相似文献   

17.
The cupuassu shell (Theobroma grandiflorum) which is a food residue was used in its natural form as biosorbent for the removal of C.I. Reactive Red 194 and C.I. Direct Blue 53 dyes from aqueous solutions. This biosorbent was characterized by infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption curves. The effects of pH, biosorbent dosage and shaking time on biosorption capacities were studied. In acidic pH region (pH 2.0) the biosorption of the dyes were favorable. The contact time required to obtain the equilibrium was 8 and 18 h at 298 K, for Reactive Red 194 and Direct Blue 53, respectively. The Avrami fractionary-order kinetic model provided the best fit to experimental data compared with pseudo-first-order, pseudo-second-order and chemisorption kinetic adsorption models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Radke-Prausnitz isotherm models. For both dyes the equilibrium data were best fitted to the Sips isotherm model.  相似文献   

18.
Removal of direct red 12B and methylene blue by adsorption onto Fe (III)/Cr (III) hydroxide was studied using various parameters such as agitation time, dye concentration, adsorbent dose and pH. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second-order rate kinetics. The Langmuir adsorption capacity (Qo) was found to be 5.0 and 22.8 mg dye per g of the adsorbent for direct red 12B and methylene blue, respectively. Acidic pH was favorable for the adsorption of direct red 12B and basic pH for methylene blue. Desorption studies showed that chemisorption seems to be the major mode of adsorption.  相似文献   

19.
Removal of Pb(II) from wastewater using wheat bran   总被引:5,自引:0,他引:5  
The adsorption of Pb(II) ions from aqueous solutions on wheat bran (WB) has been investigated as a function of initial concentration, adsorbent dose, adsorbent particle size, agitation speed, temperature, contact time and pH of solution. The equilibrium process was described well by the Langmuir isotherm model with maximum sorption capacities of 69.0, 80.7 and 87.0 mgg(-1) of Pb(II) on wheat bran at 20, 40 and 60 degrees C, respectively. Thermodynamic parameters, i.e. DeltaG(0), DeltaH(0) and DeltaS(0) have also been calculated for the system and the sorption process was found to be endothermic. Good correlation coefficients were obtained for the pseudo second-order kinetic model. The metal ion could be stripped by addition of 0.5M HCl, making the adsorbent regeneration and its reutilization possible.  相似文献   

20.
Summary The ability of fly ash to remove Zn(II) from water by adsorption has been tested at different concentrations, temperatures and pH of the solution. It was found that low adsorbate concentration, small particle size of adsorbent and higher temperature favoured the removal of Zn(II) from aqueous solution. The Langmuir isotherm was used to represent the equilibrium data at different temperatures. The apparent heat of adsorption has been found to be 17.325 Kcal mol–1, which indicates the process to be endothermic. The uptake of Zn(II) is diffusion controlled and the mass transfer coefficient is 3.56 × 10–5 cm s –1.The maximum removal was noted at pH 7.5. Dr V.N. Singh is Professor and Head of the Department of Applied Chemistry, Dr A.K. and Prof. D.P. Singh are members of the Department of Mining Engineering; all are situated in the Institute of Technology at Banaras Hindu University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号