首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   

2.
Concentration of ten metals (Cd, Cr, Co, Cu, Fe, Li, Mn, Ni, Pb and Zn) were analyzed in the egg contents, prey and soil samples of little egret (Egretta garzetta) and cattle egret (Bubulcus ibis) from two Headworks to determine habitat and species-specific differences; to assess the importance of prey and habitat contamination as an exposure source for heavy metals. Concentration of Cu, Mn, Cr and Pb in egg contents, Fe, Co, Cu, Mn, Zn in prey and Fe, Co, Cu, Ni, Li in surface soils were significantly different (P < 0.05). Mean metal concentrations of Cr, Pb and Cd were relatively higher in little egret whereas Cu and Mn were higher in the egg contents of cattle egret. The mean concentrations of Cu, Mn and Zn were higher in prey samples of cattle egrets and Cr, Cd and Pb in prey samples of little egrets. In soil samples collected from little egret heronries metal concentrations were higher except Cu and Ni. Correlation Analysis and Hierarchical Agglomerative Cluster Analysis (HACA) identified relatively similar associations of metals and their source identification. Metals such as Fe, Cu, Mn, and Li were related with geochemical origin from parent rock material as well as anthropogenic input whereas Cr, Cd, Pb, Ni, Co and Zn were associated mostly with anthropogenic activities. The study suggested that eggs are useful bio-monitor of local heavy metal contamination.  相似文献   

3.
Larner BL  Seen AJ  Snape I 《Chemosphere》2006,65(5):811-820
This work has been the first application of DGT samplers for measuring metals in water and sediment porewater in the Antarctic environment, and whilst DGT water sampling was restricted to quantification of Cd, Fe and Ni, preconcentration using Empore chelating disks provided results for an additional nine elements (Sn, Pb, Al, Cr, Mn, Co, Cu, Zn, As). Although higher concentrations were measured for some metals (Cd, Ni, Pb) using the Empore technique, most likely due to particulate-bound or colloidal species becoming entrapped in the Empore chelating disks, heavy metal concentrations in the impacted Brown Bay were found to be comparable with the non-impacted O'Brien Bay. Sediment porewater sampling using DGT also indicated little difference between Brown Bay and O'Brien Bay for many metals (Cd, Al, Cr, Co, Ni, Cu), however, greater amounts of Pb, Mn, Fe and As were accumulated in DGT probes deployed in Brown Bay compared with O'Brien Bay, and a higher accumulation of Sn was observed in Brown Bay inner than any of the other three sites sampled. Comparison of DGT derived porewater concentrations with actual porewater concentrations showed limited resupply of Cd, Pb, Al, Cr, Mn, Co, Ni, Cu, Zn and As from the solid phase to porewater, with these metals appearing to be strongly bound to the sediment, however, resupply of Fe and Sn was apparent. Based upon our observations here, we suggest that Sn, and to a lesser extent Pb, are critical contaminants.  相似文献   

4.
The distribution and mobility of heavy metals in the soils of two contaminated sites in Piedmont (Italy) was investigated, evaluating the horizontal and vertical profiles of 15 metals, namely Al, Cd, Cu, Cr, Fe. La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr. The concentrations in the most polluted areas of the sites were higher than the acceptable limits reported in Italian and Dutch legislations for soil reclamation. Chemometric elaboration of the results by pattern recognition techniques allowed us to identify groups of samples with similar characteristics and to find correlations among the variables. The pollutant mobility was studied by extraction with water, dilute acetic acid and EDTA and by applying Tessier's procedure. The fraction of mobile species, which potentially is the most harmful for the environment, was found to be higher than the one normally present in unpolluted soils, where heavy metals are, to a higher extent, strongly bound to the matrix.  相似文献   

5.
Heavy metals in the surface soils from lands of six different use types in one of the world’s most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma–mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2?×?104 km2) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas?>?waste disposal/treatment sites?~?industrial areas?>?agricultural lands?~?forest lands?>?water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.  相似文献   

6.
The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs.  相似文献   

7.
Seven sediment cores (60-80 cm) were collected at Chiricahueto marsh, a salt marsh influenced by agrochemical, domestic and industrial effluents. The concentrations of Ag, Al, Cd, Co, Cu, Fe, Li, Mn, Pb, V and Zn were studied in the solid phase at each 1-cm section. The profiles of Ag, Cd, Cu, Mn, Ni, Pb and Zn showed a slight recent pollution in the site with enrichment and anthropogenic factors higher than unity; and correlation analysis indicated a direct association with organic carbon. Al, Co, Cr, Fe, Li, and V concentration profiles displayed a negative correlation with organic C and positive with mud content and no consistent enrichment at surface. Based on the principal component analysis and correlation analysis, two principal groups of metals were identified. The first group includes Al, Co, Cr, Fe and Li, that are derived predominantly from the weathering of parent materials in the local bedrock; and the second group include most of the metals, which were relatively enriched at surficial sediments, that are produced mainly by anthropogenic activities such as agriculture (Cd, Cu and Zn), sewage effluents (Ag, Cd, Cu, Ni, Pb and Zn) and in lesser extent atmospheric deposition (Cd and Pb).  相似文献   

8.
Used engine oils contain metals, which upon entering soils may pose risks to human health or the environment. In this study, previously published concentrations of 23 metals in 213 used engine oil samples from the early 1970s to the mid-1990s are statistically evaluated. Neat (100%) used engine oils were found to contain relatively high concentrations of lead, calcium, and zinc, attributable to piston blow-by of leaded gasoline, calcium salt detergent additives, and zinc-bearing anti-corrosion/anti-oxidation additives, respectively. Wear metal concentrations were lower. The lead concentration in used engine oils in the U.S. declined between the 1970s and early 1990s, potentially providing a basis to constrain the “age” of used engine oil(s) in soils. The concentrations of 23 metals in used engine oils were compared to soil risk benchmarks in 15 representative jurisdictions in the U.S., Canada, Australia, and Europe. The maximum concentrations in neat (100%) used engine oil of eight metals – Be, Co, Fe, Mn, Ni, Se, Ag, and Ti – were lower than their collective minimum benchmarks in soils for the jurisdictions surveyed, indicating their concentrations in soils could not be reasonably expected to exceed any soil benchmarks. Nine metals (As, Ba, Cd, Cr, Cu, Pb, Sn, V and Zn), but particularly arsenic, cadmium, lead, tin, and zinc, were identified as potential contaminants of concern (PCOC) for soils from locations impacted with used engine oils, owing to their higher median concentrations (i.e., 2.5, 1.4, 1038, 5.0, and 922 mg/kg in oil, respectively) relative to most soil benchmarks. Site-specific benchmarks and metal concentrations at reasonable oil in soil concentrations require consideration when developing the suite of PCOC metal analytes for conducting site assessments of soils impacted by used engine oil.  相似文献   

9.
Potentially hazardous trace elements such as Cd, Cu, Cr, Ni and Zn are expected to accumulate in biosolids–amended soil and remain in the soil for a long period of time. In this research, uptake of metals by food plants including cabbage, carrot, lettuce and tomato grown on soils 10 years after biosolids application was studied. All the five metals were significantly accumulated in the biosolids-amended soils. The accumulation of metal in soil did not result in significant increase in concentrations of Cu, Cr and Ni in the edible plant tissues. However, the Cd and Zn concentrations of the edible tissues of plants harvested from the biosolids receiving soils were significantly enhanced in comparison with those of the unaffected soils. The plant uptake under Greenfield sandy loam soil was generally higher than those under the Domino clayey loam soil. The metal concentration of edible plant tissue exhibited increasing trends with respect to the concentrations of the ambulated metals. The extents of the increases were plant species dependent. The indigenous soil metals were absorbed by the plants in much higher rates than those of the biosolids–receiving soils. It appeared that the plant uptake of the indigenous soil-borne metal and the added biosolids-borne metals are independent of one another and mathematically are additive.  相似文献   

10.
To assess environmental risks related to contaminants in soil it is essential to predict the available pool of inorganic contaminants at regional scales, accounting for differences between soils from variable geologic and climatic origins. An approach composed of a well-accepted soil extraction procedure (0.01 M CaCl(2)) and empirical Freundlich-type models in combination with mechanistically based models which to date have been used only in temperate regions was applied to 136 soils from a South European area and evaluated for its possible general use in risk assessment. Empirical models based on reactive element pools and soil properties (pH, organic carbon, clay, total Al, Fe and Mn) provided good estimations of available concentrations for a broad range of contaminants including As, Ba, Cd, Co, Cu, Hg, Mo, Ni, Pb, Sb, Se and Zn (r(2): 0.46-0.89). The variation of the pools of total Al in soils expressed the sorptive capacity of aluminosilicates and Al oxides at the surfaces and edges of clay minerals better than the actual variability of clay contents. The approach has led to recommendations for further research with particular emphasis on the impact of clay on the solubility of As and Sb, on the mechanisms controlling Cr and U availability and on differences in binding properties of soil organic matter from different climatic regions. This study showed that such approach may be included with a good degree of certainty for first step risk assessment procedures to identify potential risk areas for leaching and uptake of inorganic contaminants in different environmental settings.  相似文献   

11.
Environmental Science and Pollution Research - The concentrations, sources, and risks of heavy metals (Fe, Al, Mn, Cr, Co, Ni, Cu, Zn, As, Cd, W, Pb, and Tl) in sediments in five river-lake...  相似文献   

12.
The concentration and loading distribution of trace metals (Cu, Zn, Pb, Co, Ni, Cr, and Mn) and major elements (Al, Ca, Fe, and Mg) in different particle size fractions (2000-280, 280-100, 100-50, 50-10, 10-2, and <2 μm) of surface soils from highly urbanized areas in Hong Kong were studied. The enrichment of Pb, Cu, and Zn in the urban soils was strongly influenced by anthropogenic activities, and Pb accumulated in fine particles was mainly derived from past vehicular emissions as shown by Pb isotopic signatures. Trace metals primarily accumulated in clay, fine silt, and very fine sand fractions, and might pose potential health risks via the inhalation of resuspended soil particles in the air (PM10 or PM2.5), and ingestion of adhered soils through the hand-to-mouth pathway. The mobility, bioavailability, and human bioaccessibility of Pb and Zn in bulk soils correlated significantly with metal concentrations in fine silt and/or very fine sand fractions.  相似文献   

13.
The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.  相似文献   

14.
Net primary production (NPP) of the forest moss Hylocomium splendens increased significantly along an elevational gradient in the southern Alps of Italy. Extracellularly bound metals (Al, Ca, Co, Cr, Fe, Ni, Mo, Ni, Pb) showed declining concentrations in moss tissue with increasing altitude, presumably because the amount of exchange sites on the cell wall increases less than total biomass. Concentrations of intracellular elements did not vary (Cd, Cu, Mg, Na, Zn), or even increased (K) with altitude. The observed patterns were always independent of precipitation amount and soil concentrations of exchangeable elements. A higher soil nutrient status only enhanced K uptake by the moss. We concluded that variations in moss NPP, associated with elevational gradients, may significantly affect estimates of atmospheric deposition based on moss analysis in mountainous regions.  相似文献   

15.
The study area (Szklary Massif, SW Poland) comprises three sites of different soil provenance: (1) natural serpentine Cambisol, (2) anthroposol situated on waste dump and (3) cultivated Inceptisol developed on glacial tills next to the dump. Potentially toxic elements (PTE) have either lithogenic or anthropogenic origins in these sites. The chemical partitioning of Co, Cr, Cu, Ni, Pb and Zn among solid forms was determined by sequential extractions coupled with direct mineral identifications (SEM, electron microprobe analysis - EMPA, and XRD). Examination of solid residues after several extraction steps was conducted in order to discuss the indirect speciation obtained by the extraction method. Total concentrations of PTE having anthropogenic origin greatly exceed those of lithogenic origin. Mobility of studied PTE is variable in the different environments except for Cr which is always mostly found in residual fractions of extractions. Cu and Pb are more mobile than Cr and Co in all soils. Zn is more stable (Cu>Pb>Ni>Co>Zn>Cr) in the serpentine soil and cultivated epipedon (Pb>Cu>Zn>Ni>Co>Cr) than in the anthroposol (Zn>CuPb>Ni>Co>Cr). PTE of lithogenic origin are generally less mobile than those from anthropogenic origin except Ni which is more mobile in the serpentine soil. Nonetheless, mineral forms of metals better determine their mobility than metal origin. Identification by direct methods of the PTE mineral form was not possible for metals present at low concentrations (Cu, Pb). However, direct mineralogical examinations of the solid residues of several extractions steps improved the assessment of the PTE solid speciation and mobility, particularly for Cr, Ni and Zn.  相似文献   

16.
In this study, we compared the usefulness of a long-living sponge (Hymeniacidon heliophila, Class Demospongiae) and a short-living one (Paraleucilla magna, Class Calcarea) as biomonitors of metallic pollution. The concentrations of 16 heavy metals were analyzed in both species along a gradient of decreasing pollution from the heavily polluted Guanabara Bay to the less impacted coastal islands in Rio de Janeiro, SE Brazil (SW Atlantic). The levels of most elements analyzed were higher in H. heliophila (Al, Co, Cr, Cu, Fe, Mn, Ni, Hg, Ni, and Sn) and P. magna (Ni, Cu, Mn, Al, Ti, Fe, Pb, Co, Cr, Zn, and V) collected from the heavily polluted bay when compared with the cleanest sites. Hymeniacidon heliophila accumulates 11 elements more efficiently than P. magna. This difference may be related to their skeleton composition, histological organization, symbiont bacteria and especially to their life cycle. Both species can be used as a biomonitors of metallic pollution, but while Hymeniacidon heliophila was more effective in concentrating most metals, Paraleucilla magna is more indicated to detect recent pollutant discharges due to its shorter life cycle. We suggest that the complementary use of species with contrasting life histories can be an effective monitoring strategy of heavy metals in coastal environments.  相似文献   

17.
Use of sequential extraction to assess metal partitioning in soils   总被引:12,自引:0,他引:12  
The state of heavy metal pollution and the mobility of Cd, Cu, Ni, Cr, Pb and Zn were studied in three texturally different agricultural soil profiles near a Cu-Ni smelter in Harjavalta, Finland. The pseudo-total concentrations were determined by an aqua regia procedure. Metals were also determined after division into four fractions by sequential extraction with (1) acetic acid (exchangeable and specifically adsorbed metals), (2) a reducing agent (bound to Fe/Mn hydroxides), (3) an oxidizing agent (bound to soil organic matter) and (4) aqua regia (bound to mineral structures). Fallout from the smelter has increased the concentrations of Cd, Cu and Ni in the topsoil, where 75-90% of Cd, 49-72% of Cu and 22-52% of Ni occurred in the first two fractions. Slight Pb and Zn pollution was evident as well. High proportions of mobile Cd, Cu and Ni also deeper in the sandy soil, closest to the smelter, indicated some downward movement of metals. The hydroxide-bound fraction of Pb dominated in almost all soils and horizons, while Ni, Cr and Zn mostly occurred in mineral structures. Aqua regia extraction is usefully supplemented with sequential extraction, particularly in less polluted soils and in soils that exhibit substantial textural differences within the profiles.  相似文献   

18.
According to the European Thematic Strategy for Soil Protection, the characterization of the content and source of heavy metals in soils are necessary to establish quality standards on a regional level that allow the detection of sampling sites affected by pollution. In relation to this, the surface horizons of 54 agricultural soils under vegetable crops in the Alicante province (Spain), a representative area of the European Mediterranean region, were sampled to determine the content of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Analytical determinations were performed by atomic absorption spectroscopy after microwave sample digestion in acid solution. Results indicated that heavy metal levels were similar to those reported by authors working on agricultural soils from other parts of the Mediterranean region, with the exception of Cu and Pb in some samples. Multivariate analysis (principal component analysis and cluster analysis) was performed to identify a common source for heavy metals. Moreover, soil properties were determined in order to characterize agricultural soils and to analyze relationships between heavy metal contents and soil properties. The content of Co, Cr, Fe, Mn, Ni and Zn were associated with parent rocks and corresponded to the first principal component called the lithogenic component. A significant correlation was found between lithogenic metals and some soil properties such as soil organic matter, clay content, and carbonates, indicating an important interaction among them. On the other hand, elements such as Cd, Cu and Pb were related to anthropic activities and comprised the second (Cu and Pb) and third principal components (Cd), designated the anthropogenic components. Generally, Cd, Cu and Pb showed a lower correlation with soil properties due to the fact that they remain in available forms in these agricultural soils. Taking into account these results and other achieved in other parts of the European Mediterranean region, it can be concluded that soil quality standards are highly needed to declare soils affected by human induced pollution. This is particularly relevant for anthropogenic metals (Cd, Cu and Pb, and in some areas also Zn). Further research in other agricultural areas of the region would improve the basis for proposing such soil quality standards.  相似文献   

19.
In this study the elemental distribution of selected essential (Ca, Mg, Al, Mn, Cu, Fe, Co, Cr, Zn, Ni and Se) and the non-essential (Pb, Hg and As) elements were determined in the bulb and peel of Amadumbe (Colocasia esculenta) samples from eight different sites in KwaZulu-Natal, South Africa. The concentration of Se and As in the soil and in the Amadumbe bulbs were below the detection limit of 0.09 μg g?1. The total and bioavailable concentrations of the elements in conjunction with pH, soil organic matter (SOM) and cation exchange capacity (CEC) were determined in the soil samples from the eight sites. Statistical analysis was done to evaluate the impact of soil quality parameters on the chemical composition of the Amadumbe root. The results show accumulation or exclusion of certain elements by the bulb as evidenced by the noticeable increase or decrease of the concentrations of elements, respectively. Ca and Mg were found to be major elements in the range (2000-12000 μg g?1), whilst Mn, Zn, Fe and Al were found to be minor elements in the range (20-400 μg g?1). A general trend observed was that the plant favours the absorption of Zn over Cu. A positive correlation between Mg & Ca, Cu & Fe and Co & Ni was also observed. Statistical analysis revealed that the plant tended to accumulate Mg, Ca, Co, Cr and Pb whilst it excluded Hg and Fe, to a lesser extent.  相似文献   

20.
Heavy metal pollution and forest health in the Ukrainian Carpathians   总被引:2,自引:0,他引:2  
The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号