首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Stenbjörn Styring 《Ambio》2012,41(2):156-162
The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and ‘endless’ resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.  相似文献   

2.
The implementation of renewable wind and solar energy sources instead of fossil fuels to produce such energy carriers as electricity and hydrogen facilitates reductions in air pollution emissions. Unlike from traditional fossil fuel technologies, air pollution emissions from renewable technologies are associated mainly with the construction of facilities. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of air pollution emission abatement is more than ten times less than the cost if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used instead of gasoline in a fuel cell vehicle, the cost of air pollution emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. The results provide the basis for a useful approach to an optimal strategy for air pollution mitigation.  相似文献   

3.
Eva-Mari Aro 《Ambio》2016,45(1):24-31
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called “synthetic biology”, which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.  相似文献   

4.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

5.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H2 production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

6.
Renewable Energy     
The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee’s Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee’s scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.  相似文献   

7.
Transportation contributes to energy consumption and greenhouse gas emissions, while sustainable mobility requires reductions in both areas. Alternative fuels from natural gas and from renewable resources can contribute in the mid and long-term to the fuel market for mobile as well as stationary applications. The lack of reliable data on emissions, energy chain efficiencies, and costs demonstrates the need for field tests and demonstration projects. Fuel cells offer the technology to use ‘new fuels’ in a highly efficient way.  相似文献   

8.

Agriculture is the main occupation of the majority of people in India. The majority of the population in India is dependent (directly or indirectly) on agriculture as an occupation. The agriculture sector requires more freshwater and power for better yield in the current scenario. Nevertheless, the ever-increasing rate of energy consumption, limited fossil fuels, and rising pollution have made the expansion of renewable resources essential. Due to the suitable solar potential available in India, the deployment of solar energy has been more as compared to other renewable resources. The current study aims to discuss the various technologies, initiatives and policies of solar energy usage in agriculture. This work delivers an assessment of the advancement of solar energy vis-à-vis agricultural applications through the greenhouse concept and photovoltaic approach in India. Various agricultural applications of solar energy, such as solar water desalination system, solar water pumping system, solar crop dryer system for food safety, etc. are discussed as a means to promote solar-based technology. It also highlights the scenario of solar energy in India with important accomplishments, developmental approaches, and future potential. In-depth studies of various policies and government initiatives including those in research and development are also discussed. The current survey on solar technologies will be an aid to agribusiness frameworks to comprehend the statuses, obstructions, and extent of advancement. Finally, some future recommendations for further developments in this approach are discussed. This work sheds light on varied areas of solar energy-assisted agricultural systems as a potentially sustainable and eco-friendly pathway.

Graphical abstract
  相似文献   

9.
To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H(2) production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth's surface and use water as the source of electrons to reduce protons. The H(2) production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H(2) for extended periods even in the presence of evolved O(2). This review summarizes our efforts to improve the rate of photobiological H(2) production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H(2) also are discussed.  相似文献   

10.
In this paper, a brief overview is presented of natural gas as a fuel resource with subsequent carbon capture and re-use as a means to facilitate reduction and eventual elimination of man-made carbon emissions. A particular focus is shale gas and, to a lesser extent, methane hydrates, with the former believed to provide the most reasonable alternative as a transitional fuel toward a low-carbon future. An emphasis is placed on the gradual elimination of fossil resource usage as a fuel over the coming 35 to 85 years and its eventual replacement with renewable resources and nuclear power. Furthermore, it is proposed that synthesis of chemical feedstocks from recycled carbon dioxide and hydrogen-rich materials should be undertaken for specific applications in the transport sector which require access to high energy density fuels. To achieve the latter, carbon dioxide capture is imperative and possible synthetic routes for chemical feedstock production are briefly reviewed.  相似文献   

11.
To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H2 production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth’s surface and use water as the source of electrons to reduce protons. The H2 production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H2 for extended periods even in the presence of evolved O2. This review summarizes our efforts to improve the rate of photobiological H2 production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H2 also are discussed.  相似文献   

12.

Due to current water stress, there is a problem with hygiene and sanitation in many parts of the world. According to predictions from the United Nations, more than 2.7 billion people will be challenged by water scarcity by the middle of the century. The water industry is increasingly interested in desalination of the sea, ocean, and brackish water. Desalination processes are widely classified as thermal or membrane technologies. In the Middle East, thermal desalination remains the primary technology of choice, but membrane processes, for example reverse osmosis (RO), have evolved rapidly and in many other parts of the world are currently even surpassing thermal processes. The purpose of this paper is to review the renewable energy source, the technology, desalination systems, and their possible integration with renewable energy resources and their cost. This article suggests that the most practical renewable desalination techniques to be used are the solar photovoltaic integrated RO desalination process, the hybrid solar photovoltaic-wind integrated RO desalination process, the hybrid solar photovoltaic-thermal (PVT) integrated RO desalination process, and the hybrid solar photovoltaic-thermal effect distillation (PVT-MED) desalination process. However, intensive research is still required to minimize the cost, reduce the heat loss, enhance the performance, and increase the productivity.

  相似文献   

13.
Leif Hammarström 《Ambio》2012,41(2):103-107
Solar energy has potential to provide a major part of our energy for our future, as heat, electricity, and fuels. Most solar technologies are still at the research and development stage, however. There is therefore a need for bold and enduring efforts in research, development and commercialization, including strategic legislative measures and infrastructure investments. This overview article serves as an introduction to the present Special Report, briefly outlining the potential, principles and possibilities as well as some of the challenges of solar energy conversion.  相似文献   

14.
Hammarström L 《Ambio》2012,41(Z2):103-107
Solar energy has potential to provide a major part of our energy for our future, as heat, electricity, and fuels. Most solar technologies are still at the research and development stage, however. There is therefore a need for bold and enduring efforts in research, development and commercialization, including strategic legislative measures and infrastructure investments. This overview article serves as an introduction to the present Special Report, briefly outlining the potential, principles and possibilities as well as some of the challenges of solar energy conversion.  相似文献   

15.
The 1988 Air Quality Management Plan was approved by the Board of the California South Coast Air Quality Management District in March 1989. The District comprises the counties of Los Angeles, Orange, and Riverside, and the non-desert portion of San Bernardino county. Emissions reductions in the past have lead to significant improvement in air quality despite large increases in growth. However, the District, largely because of continuous growth, currently violates the air quality standards for ozone, carbon monoxide, nitrogen dioxide, and respirable particulate matter (PM10). Based upon the AQMP, reduction of approximately 80 percent in emissions of oxides of nitrogen and volatile organic compounds is required to bring the District into compliance with all air quality standards in the next twenty years.

Achieving compliance will necessitate the use of advanced technologies, as well as some changes in lifestyle and management practices. Advanced technologies, including the use of electric vehicles powered by batteries or fuel cells, the use of cleaner burning fuels and advanced combustion modifications, and treatment of surface coatings and solvents are included in the AQMP. The Technology Advancement Office in the District was created to work with industry, universities, research institutes, and other local, state and federal agencies to identify, evaluate, and promote low emitting fuels and technologies. In addition to electricity, fuels burning cleaner than conventional gasoline or diesel are being tested to obtain emissions and durability data so that rational choices can be made for the future. Compressed natural gas, methanol and liquefied petroleum gas are considered to be cleaner burning fuels for current applications. Ethanol, butane, and various oxygenated blends are being evaluated, and the broader application of solar energy and hydrogen are being investigated.

The impact of various cleaner burning fuels on air quality is being addressed. To date, methanol is the only fuel for which results are available. These results indicate that methanol use in vehicles—with control of formaldehyde emissions below 15 mg/mile for light-duty vehicles—can provide air quality benefits for all criteria pollutants and certain air toxics. These benefits are greater for M100 than M85.

Several District advanced technology programs are described, including a reduction in emissions from paints and coatings, and the demonstration of electric vehicles.  相似文献   

16.
Findings in research at the Bureau of Mines Bartlesville Petroleum Research Center show that photochemical reactivities of vehicular emissions are reliably measured in laboratory experiments in which smog manifestations are observed directly. Results of the direct smog-chamber measurements reveal that the photochemical behavior of emissions may differ significantly from the behavior that is predicted from the exhaust composition using reactivity scales. The concept of direct measurement of reactivity was applied to determine differences in characteristics of emissions from 20 passenger vehicles, each tested using 10 different fuels. The primary objective of the fuel study was to assess the over-all effect on vehicle emissions of fuel modifications designed to reduce the photochemical pollution associated with automotive evaporative losses. A similar, brief, comparative study of leaded and nonleaded fuels was also made. Reducing volatility was found to reduce the over-all smog potential of vehicle emissions but involved some penalty by way of increased exhaust emissions. Replacing light olefin with the corresponding paraffin also reduced over-all smog potential and in this case exhaust reactivity was not affected. In general greater smog potential was found to be associated with prototype nonleaded fuels than with leaded fuels typical of products currently marketed.  相似文献   

17.
Municipal and state regulations limiting the allowable sulfur content of fossil fuels are having the effect of changing fuel use patterns of many of the nation’s utilities. The utility companies are faced with increased costs of lower sulfur fuels and capital expenditures associated with the fuel changes, as well as with greater uncertainty concerning long term supplies of suitable fuels. Capital costs for air pollution control are mounting. Electrostatic precipitators must be built to meet more stringent air pollution codes, and stack heights may have to be increased to improve discharge patterns. Other capital expenditures for added requirements such as steam and electric tracing and pumping equipment must be made to accommodate distinctive characteristics of low sulfur fuels. Air pollution control costs do not result in increased productivity, improved products, or products that will command a better price in the market. Nevertheless, the expenditures are essential. Nuclear power is the long range solution to which many utilities look but, in the shorter view, the power industry must expect continued cost increases in the areas of fuel and operating expenses, capital expenditures and research and development.  相似文献   

18.
Biomass, as a renewable energy source, is an excellent alternative for the partial replacement of fossil fuels in thermal and electric energy production. A new fuel type as biomass for energy utilisation includes ligneous plants with considerable heavy metal content. The combustion process must be controlled during the firing of significant quantities of contaminated biomass grown on brownfield lands. By implementing these measures, air pollution and further soil contamination caused by the disposal of the solid burning residue, the ash, can be prevented. For the test samples from ligneous plants grown on heavy metal-contaminated fields, an ore mine (already closed for 25 years) was chosen. With our focus on the determination of the heavy metal content, we have examined the composition of the soil, the biomass and the combustion by-products (ash, fly ash). Our results confirm that ash resulting from the combustion must be treated as toxic waste and its deposition must take place on hazardous waste disposal sites. Biomass of these characteristics can be burnt in special combustion facility that was equipped with means for the disposal of solid burning residues as well as air pollutants.  相似文献   

19.

This study is premised on Indonesia’s climate goal amidst good economic performance. To test the environmental implication of this macroeconomic performance of Indonesia, we adopt Indonesian quarterly data of 1990Q1–2018Q4 for empirical analysis. Relevant instruments in the economic performance of Indonesia such as urbanization, foreign direct investment (FDI), and renewable energy source are all adopted for accurate estimations and analysis of this topic. Different approaches (structural break test, autoregressive distributed lag (ARDL)-bounds testing and Granger causality) are all adopted in this study. Our analysis and policy recommendations are based on the short-run and long-run ARDL dynamics and Granger causality. Findings from ARDL confirmed negative relationship between carbon emission and renewable energy source, FDI, and urbanization. Also, a U-shape instead of inverted U-shaped EKC is found confirming the impeding implication of Indonesian economic growth to its environmental performance if not checkmate. From Granger causality analysis, all the variables are seen transmitting to urbanization in a one-way causal relationship. Also, FDI and renewable energy prove to be essential determinants of the country’s environment development; hence, FDI is seen transmitting to both energy sources (fossil fuels and renewables) in a one-way causal relationship. Renewable energy is as well seen having two ways causal relationship with both carbon emission and fossil fuels. This result has equally exposed the significant position of the three instruments (urbanization, FDI, and renewable energy source) in Indonesian environment development.

  相似文献   

20.
Technological options for the management of biosolids   总被引:1,自引:0,他引:1  
BACKGROUND, AIM, AND SCOPE: Large quantities of biosolids (sewage sludge), which are produced from municipal wastewater treatment, are ever-increasing because of the commissioning of new treatment plants and continuous upgrades of the existing facilities. A large proportion of biosolids are currently landfilled. With increasing pressure from regulators and the general public, landfilling of biosolids is being phased out in many countries because of potential secondary pollution caused by leachate and the emission of methane, a potent greenhouse gas. Biosolids contain nutrients and energy that can be used beneficially. Significant efforts have been made recently to develop new technologies to manage biosolids and make useful products from them. In this paper, we provide a review of the technologies in biosolids management. MATERIALS AND METHODS: A survey of literature was conducted. RESULTS: At present, the most common beneficial use of biosolids is agricultural land application because of inherent fertilizer values found in biosolids. Expansion of land application, however, may be limited in the future because of more stringent regulatory requirements and public concern about food chain contamination in some countries. Perceived as a green energy source, the combustion of biosolids has received renewed interest. Anaerobic digestion is generally a more effective method than incineration for energy recovery, and digested biosolids are suitable for further beneficial use through land application. Although conventional incineration systems for biosolid management generally consume more energy than they produce because of the high moisture content in the biosolids, it is expected that more combustion systems, either monocombustion or cocombustion, will be built to cope with the increasing quantity of biosolids. DISCUSSION: Under the increasingly popular low-carbon economy policy, biosolids may be recognized as a renewable fuel and be eligible for 'carbon credits'. Because ash can be used to manufacture construction materials, combustion can provide a complete management for biosolids. A number of advanced thermal conversion technologies (e.g., supercritical water oxidation process and pyrolysis) are under development for biosolids management with a goal to generate useful products, such as higher quality fuels and recovery of phosphorus. With an ever-increasing demand for renewable energy, growing bioenergy crops and forests using biosolids as a fertilizer and soil amendment can not only contribute to the low-carbon economy but also maximize the nutrient and carbon value of the biosolids. CONCLUSIONS: Land application of biosolids achieves a complete reuse of its nutrients and organic carbon at a relatively low cost. Therefore, land application should become a preferred management option where there is available land, the quality of biosolids meet regulatory requirements, and it is socially acceptable. Intensive energy cropping and forest production using biosolids can help us meet the ever-increasing demand for renewable energy, which can eliminate the contamination potential for food sources, a common social concern about land application of biosolids. In recent years, increasing numbers of national and local governments have adopted more stringent regulations toward biosolid management. Under such a political climate, biosolids producers will have to develop multireuse strategies for biosolids to avoid being caught because a single route management practice might be under pressure at a short notice. Conventional incineration systems for biosolids management generally consume more energy than they produce and, although by-products may be used in manufacturing, this process cannot be regarded as a beneficial use of biosolids. However, biosolids are likely to become a source of renewable energy and produce 'carbon credits' under the increasingly popular, low-carbon economy policy. RECOMMENDATIONS AND PERSPECTIVES: To manage biosolids in a sustainable manner, there is a need for further research in the following areas: achieving a higher degree of public understanding and acceptance for the beneficial use of biosolids, developing cost-efficient and effective thermal conversions for direct energy recovery from biosolids, advancing technology for phosphorus recovery, and selecting or breeding crops for efficient biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号