首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Mediated Modeling (MM) refers to “model building with stakeholders,” enabling collaborative learning and decision support. This article presents results from the Integrated Freshwater Solutions (IFS — www.ifs.org.nz ) action research project in the Manawatū River watershed, New Zealand. Water quality in the watershed often rates poorly, with the key issues being sedimentation, eutrophication, and habitat destruction. IFS is to develop and test MM to support collaborative and adaptive freshwater management. The project team was presented with the opportunity to collaborate with the Manawatū River Leaders' Forum (MRLF), an initiative driven by the Regional Council to improve water quality. This article describes the process of MM and how it was adapted to meet the needs of MRLF stakeholders. This highlights some important conditions for collaborative and adaptive capacity building. The MM/MRLF stakeholders, represented: industry, farming, local and regional authorities, environmental groups, and indigenous Māori iwi/hapū (tribe/sub‐tribe). This article describes how MM assisted early in the collaborative process to develop the following: (1) a shared and more integrated understanding of causes and effects and (2) a sense of the order of magnitude of the problems and the impact proposed solutions might have. It also describes how the context of politics, time, and resource constraints played an important role reverting to a more traditional planning approach part way through the process.  相似文献   

2.
ABSTRACT: Integrated watershed management in the Lower Mississippi Alluvial Plain (Delta) requires blending federal, state, and local authority. The federal government has preeminent authority over interstate navigable waters. Conversely, state and local governments have authority vital for comprehensive watershed management. In the Delta, integrating three broad legal and administrative regimes: (1) flood control, (2) agricultural watershed management, and (3) natural resources and environmental management, is vital for comprehensive intrastate watershed, and interstate river basin management. Federal Mississippi River flood control projects incorporated previous state and local efforts. Similarly, federal agricultural programs in the River's tributary headwaters adopted watershed management and were integrated into flood control efforts. These legal and administrative regimes implement national policy largely in cooperation with and through technical and financial assistance to local agencies such as levee commissions and soil and water conservation districts. This administrative infrastructure could address new national concerns such as nonpoint source pollution which require a watershed scale management approach. However, the natural resources and environmental management regime lacks a local administrative infrastructure. Many governmental and non governmental coordinating organizations have recently formed to address this shortcoming in the Delta. With federal and state leadership and support, these organizations could provide mechanisms to better integrate natural resources and environmental issues into the Delta's existing local administrative infrastructure.  相似文献   

3.
Wetland protection and restoration strategies that are designed to promote hydrologic resilience do not incorporate the location of wetlands relative to the main stream network. This is primarily attributed to the lack of knowledge on the effects of wetland location on wetland hydrologic function (e.g., flood and drought mitigation). Here, we combined a watershed‐scale, surface–subsurface, fully distributed, physically based hydrologic model with historical, existing, and lost (drained) wetland maps in the Nose Creek watershed in the Prairie Pothole Region of North America to (1) estimate the hydrologic functions of lost wetlands and (2) estimate the hydrologic functions of wetlands located at different distances from the main stream network. Modeling results showed wetland loss altered streamflow, decreasing baseflow and increasing stream peakflow during the period of the precipitation events that led to major flooding in the watershed and downstream cities. In addition, we found that wetlands closer to the main stream network played a disproportionately important role in attenuating peakflow, while wetland location was not important for regulating baseflow. The findings of this study provide information for watershed managers that can help to prioritize wetland restoration efforts for flood or drought risk mitigation.  相似文献   

4.
We performed two‐dimensional (2D) hydrodynamic modeling to aid recovery of the endangered razorback sucker (Xyrauchen texanus) by reconnecting the Green River with its historic bottomland floodplain wetlands at Ouray National Wildlife Refuge, Utah. Reconnection allows spring flood flows to overtop the river levee every two to three years, and passively transport razorback sucker larvae to the wetlands to grow in critical habitat. This study includes (1) river hydrologic analysis, (2) simulation of a levee breach/weir, overtopping of river flood flows, and 2D flow through the wetlands using Hydrologic Engineering Center River Analysis System 2D, and (3) modeling flow and restoration scenarios. Indicators of hydrologic alteration were used to evaluate river flow metrics, in particular flood magnitudes, frequency, and duration. Results showed a target spring flow of 16,000 cfs (453 m3/s) and a levee breach elevation of 4,663 ft (1,421 m) amsl would result in a median flow >6,000 acre‐feet (7.4 million m3) over five days into the wetlands, which is adequate for razorback sucker larvae transport and rearing. Modeling of flow/restoration scenarios showed using gated water control structures and passive low‐water crossings between wetland units can provide adequate control of flow movement into and storage in multiple units. Levee breaching can be a relatively simple, cost‐effective method to reconnect rivers and historic floodplains, and hydrodynamic modeling is an important tool for analyzing and designing wetland reconnection.  相似文献   

5.
Preservation of extraordinary natural resources, protection of water quality, and restoration of impaired waters require a strategy to identify and protect least-disturbed streams and rivers. We applied two objective, quantitative methods to determine stream ecological integrity of headwater reaches of 10 Ozark rivers, 5 with Wild and Scenic River federal protective status. Thirty-four variables representing macroinvertebrate and fish assemblage characteristics, in-stream habitat, riparian vegetation, water quality, and watershed attributes were quantified for each river and analyzed using two multivariate approaches. The first approach, cluster and discriminant analyses, identified two groups of river with only one variable (% forested watershed) reliably distinguishing groups. Our second approach employed ordinal scaling to compare variables for each river to conceptually ideal conditions that were developed as a composite of optimal attributes among the 10 rivers. The composite distance of each river from ideal was then calculated using a unidimensional ranking technique. Two rivers without Wild and Scenic River designation ranked highest relative to ideal (highest ecological integrity), and two others, also without designation, ranked most distant from ideal (lowest ecological integrity). Fish density, number of intolerant fish species, and invertebrate density were influential biotic variables for scaling. Contributing physical variables included riparian forest cover, water nitrate concentration, water turbidity, percentage of forested watershed, percentage of private land ownership, and road density. These methods provide a framework for refinement and application in other regions to facilitate the process of establishing least-disturbed reference conditions and identifying rivers for protection and restoration.  相似文献   

6.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

7.
Abstract: Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water‐mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two‐thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large‐scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free‐flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large‐scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream‐system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large‐scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.  相似文献   

8.
A Vegetation-Based Method for Ecological Diagnosis of Riverine Wetlands   总被引:2,自引:0,他引:2  
/ The management of riverine wetlands, recognized as a major component of biodiversity in fluvial hydrosystems, is problematic. Preservation or restoration of such ecosystems requires a method to assess the major ecological processes operating in the wetlands, the sustainability of the aquatic stage, and the restoration potential of each riverine wetland. We propose a method of diagnosis based on aquatic macrophytes and helophytes. Plant communities are used because they are easy to survey and provide information about (1) the origin of a water supply (i.e., groundwater, seepage, or surface river water) and its nutrient content, (2) effects of flood disturbances, and (3) terrestrialization processes. The novelty of the method is that, in contrast to available typologies, it is based on the interference of gradients resulting from several processes, which makes it possible to predict wetland sustainability and restoration potential. These predictions result from knowledge of the processes involved in terrestrialization, i.e., the influence of flood disturbances, occurrence of groundwater supplies, trophic degree, and water permanency of the habitat during a yearly cycle. The method is demonstrated on five different river systems.  相似文献   

9.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   

10.
ABSTRACT: Urbanization, farming, and other watershed activities can significantly alter storm hydrographs and sediment erosion rates within a watershed. These changes routinely cause severe economic and ecological problems manifested in the form of increased flooding and significant changes in channel morphology. As the activities within a watershed influence the hydrologic, hydraulic, and ecological conditions within a river, interdisciplinary approaches to predict and assess the impacts that different land uses have on streams need to be developed. An important component of this process is ascertaining how hydrologic changes induced by specific watershed activities will affect hydraulic conditions and the accompanying flood levels, sediment transport rates, and habitat conditions within a stream. A conceptual model for using spatially explicit (two‐dimensional) hydraulic models to help evaluate the impacts that changes in flow regime might have on a river is presented. This framework proposes that reproducing and quantifying flow complexity allows one to compare the hydraulic conditions within urban, urbanizing, and non‐urban streams in a more biologically and economically meaningful way. The justification, advantage, and need for such a method is argued through the results of one‐ and two‐dimensional hydraulic model studies. The implementation of this methodology in watershed urbanization studies is described.  相似文献   

11.
The Phase 5.3 Watershed Model simulates the Chesapeake watershed land use, river flows, and the associated transport and fate of nutrient and sediment loads to the Chesapeake Bay. The Phase 5.3 Model is the most recent of a series of increasingly refined versions of a model that have been operational for more than two decades. The Phase 5.3 Model, in conjunction with models of the Chesapeake airshed and estuary, provides estimates of management actions needed to protect water quality, achieve Chesapeake water quality standards, and restore living resources. The Phase 5.3 Watershed Model tracks nutrient and sediment load estimates of the entire 166,000 km2 watershed, including loads from all six watershed states. The creation of software systems, input datasets, and calibration methods were important aspects of the model development process. A community model approach was taken with model development and application, and the model was developed by a broad coalition of model practitioners including environmental engineers, scientists, and environmental managers. Among the users of the Phase 5.3 Model are the Chesapeake watershed states and local governments, consultants, river basin commissions, and universities. Development and application of the model are described, as well as key scenarios ranging from high nutrient and sediment load conditions if no management actions were taken in the watershed, to low load estimates of an all‐forested condition.  相似文献   

12.
Nepal's geographical landscape of plains, hills, and mountains exposes it to severe climatic conditions. Out of the three regions, the plain, also called Terai, has the greatest risk of flooding, especially during the monsoon season when heavy precipitation coincides with snow and glacier melting from the mountains and hills. In recent years, greater water availability has increased the frequency of flooding, destroying farms, livestock, and infrastructure, hence, reducing agricultural productivity and disrupting economic activities. What makes Nepal a unique case study for climate change is its richness in water resources, propensity to flood, the percentage of poor people living in the flood prone region, and their dependency on natural resources. The lessons drawn can help when formulating pro-poor adaptation policies for other Asian and many developing countries that are as diverse, poor, and agrarian as Nepal. Using data collected through survey interviews, the study examines the ability of the poor to adapt to climate change. The study also explores the adaptive capacity of communities in the Koshi Tappu area, by examining whether or not they have the required capital assets (human, social, natural, physical, and financial capital) to remain resilient in the face of continuous climate events impacts.  相似文献   

13.
Co‐management involves the shared administration of natural resources by two or more parties. This study examines the role of social capital in the process of developing co‐management in three river corridors in Canada. Qualitative analysis reveals that social capital acts as a catalyst helping groups to progress through the stages of the co‐management process. Forms of social capital (bridging and bonding) are identified that advance and/or inhibit the development of co‐management. The article reaffirms the need to expand the institutional basis for natural resource management and provides empirical evidence that social capital plays a fundamental role in developing co‐management. In conclusion, the article suggests that resource agencies need to recognize the value of social capital and the necessity for government representatives to be informed of and practiced in these skills, if they are to engage meaningfully with the civilian population.  相似文献   

14.
The relationship between nutrient removal and loading rate was examined using data from five forested wetlands in Louisiana that have received secondarily treated effluent from 3 to 60 years. Loading rates ranged from 0.65 to 26.80 g/m2/yr for total nitrogen and 0.18 to 8.96 g/m2/yr for total phosphorus. At loading rates below 20 g/m2/yr, total nitrogen concentrations in surface waters of Louisiana forested wetlands were reduced to background concentrations (i.e., ≤3 mg/l). Similarly, at loading rates below 2 g/m2/yr, total phosphorus concentrations were also generally reduced to background concentrations (i.e., ≤1 mg/l). These data demonstrate that freshwater forested wetlands can reduce nutrient concentrations in treated effluent to background concentrations present in relatively undisturbed wetlands. An understanding of the relationship between loading rates and nutrient removal in natural wetlands is important, particularly in Louisiana where discharges of fresh water are being used in ecosystem restoration.  相似文献   

15.
Many small streams in coastal watersheds in the southeastern United States are modified for agricultural, residential, and commercial development. In the South Carolina Lower Coastal Plain, low‐relief topography and a shallow water table make stream channelization ubiquitous. To quantify the impacts of urbanization and stream channelization, we measured flow and sediment from an urbanizing watershed and a small forested watershed. Flow and sediment export rates were used to infer specific yields from forested and nonforested regions of the urbanizing watershed. Study objectives were to: (1) quantify the range of runoff‐to‐rainfall ratios; (2) quantify the range of specific sediment yields; (3) characterize the quantity and quality of particulate matter exported; and (4) estimate sediment yield attributable to agriculture, development, and channelization activities in the urbanizing watershed. Our results showed that the urban watershed exported over five times more sediment per unit area compared with the forested watershed. Sediment concentration was related to flow flashiness in the urban watershed and to flow magnitude in the forested watershed. Sediments from the forested watershed were dominated by organic matter, whereas mineral matter dominated sediment from the urban stream. Our results indicated that a significant shift in sediment quality and quantity are likely to occur as forested watersheds are transformed by urbanization in coastal South Carolina.  相似文献   

16.
River flooding impacts human life and infrastructure, yet provides habitat and ecosystem services. Traditional flood control (e.g., levees, dams) reduces habitat and ecosystem services, and exacerbates flooding elsewhere. Floodplain restoration (i.e., bankfull floodplain reconnection and Stage 0) can also provide flood management, but has not been sufficiently evaluated for small frequent storms. We used 1D unsteady Hydrologic Engineering Center's River Analysis System to simulate small storms in a 5 km-long, second-order generic stream from the Chesapeake Bay watershed, and varied % channel restored (starting at the upstream end), restoration location, restoration bank height (distinguishes bankfull from Stage 0 restoration), and floodplain width/Manning's n. Stream restoration decreased (attenuated) peak flow up to 37% and increased floodplain exchange by up to 46%. Floodplain width and % channel restored had the largest impact on flood attenuation. The incremental effects of new restoration projects on flood attenuation were greatest when little prior restoration had occurred. By contrast, incremental effects on floodplain exchange were greatest in the presence of substantial prior restoration, setting up a tradeoff. A similar tradeoff was revealed between attenuation and exchange for project location, but not bank height or floodplain width. In particular, attenuation and exchange were always greater for Stage 0 than for bankfull floodplain restoration. Stage 0 thus may counteract human impacts such as urbanization.  相似文献   

17.
In a climate of limited resources, it is often necessary to prioritize restoration efforts geographically. The synoptic approach is an ecologically based tool for geographic prioritization of wetland protection and restoration efforts. The approach was specifically designed to incorporate best professional judgment in cases where information and resources are otherwise limited. Synoptic assessments calculate indices for functional criteria in subunits (watersheds, counties, etc.) of a region and then rank the subunits. Ranks can be visualized in region-scale maps which enable managers to identify areas where efforts optimize functional performance on a regional scale. In this paper, we develop a conceptual model for prioritizing watersheds whose wetlands can be restored to reduce total sediment yield at the watershed outlet. The conceptual model is designed to rank watersheds but not individual wetlands within a watershed. The synoptic approach is valid for applying the sediment yield reduction model because there is high demand for prioritizing disturbed wetlands for restoration, but there is limited, quantitative, accurate information available with which to make decisions. Furthermore, the cost of creating a comprehensive database is prohibitively high. Finally, because the model will be used for planning purposes, and, specifically, for prioritizing based on multiple decisions rather than optimizing a single decision, the consequence of prioritization errors is low. Model results cannot be treated as scientific findings. The conclusions of an assessment are based on judgement, but this judgement is guided by scientific principles and a general understanding of relevant ecological processes. The conceptual model was developed as the first step towards prioritizing of wetland restoration for sediment yield reduction in US EPA Region 4.  相似文献   

18.
Traditionally, wetland management strategies have focused on single familiar objectives, such as improving water quality, strengthening biodiversity, and providing flood control. Despite the relevant amount of studies focused on wetland creation or restoration with these and other objectives, still little is known on how to integrate objectives of wetland creation or restoration at different landscape scales. We have reviewed the literature to this aim, and based on the existing current knowledge, we propose a four step approach to take decisions in wetland creation or restoration planning. First, based on local needs and limitations we should elucidate what the wetland is needed for. Second, the scale at which wetland should be created or restored must be defined. Third, conflicts and compatibilities between creation or restoration objectives must then be carefully studied. Fourth, a creation or restoration strategy must be defined. The strategy can be either creating different unipurpose wetlands or multipurpose wetlands, or combinations of them at different landscape scales. In any case, in unipurpose wetland projects we recommend to pursue additional secondary objectives. Following these guidelines, restored and created wetlands would have more ecological functions, similar to natural wetlands, especially if spatial distribution in the landscape is considered. Restored and created wetlands could then provide an array of integrated environmental services adapted to local ecological and social needs.  相似文献   

19.
Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55–72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10–20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50–80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority while both wetland conservation and restoration may be equally important.  相似文献   

20.
A landscape-level approach was applied to eight rural watersheds to assess the role that wetlands play in reducing phosphorus loading to surface waters in the Lake Champlain Basin. Variables summarizing various characteristics of wetlands within a watershed were calculated using a geographic information system and then compared to measured phosphorus loading through multiple regression analyses. The inclusion of a variable based on the area of riparian wetlands located along low- and medium-order streams in conjunction with the area of agricultural and nonwetland forested lands explained 88% of the variance in phosphorus loading to surface waters. The best fit model coefficients (Pload = 0.86Ag + 0.64For – 30Ripwet + 160) suggest that a hectare of riparian wetland may be many times more important in reducing phosphorus than an agricultural hectare is in producing phosphorus. These results provide additional support for the concept that protection of riparian wetlands is an important management strategy for controlling stream water quality in multiuse landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号