首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT: The applicability of empirical relationships governing phosphorus (P) retention and nutrient assimilation in lakes and reservoirs was extended to include free surface water wetland treatment systems. Mixed reactor models have been used in lakes to predict steady state P concentration, characterize trophic state, compare P‐dynamics, and predict permissible P‐loading rates. Applying lake models to free surface water wetlands treatment systems, it was found that: sedimentation rates, loading rates, and settling velocity in these wetlands, and their typology are comparable to their lake counterparts. The analyses also suggest that phosphorus removal efficiency in a free surface water wetland treatment system is independent of trophic status, and similar to lakes, these wetlands can be classified according to their trophic state. Oligo‐and eutrophic wetland treatment systems can be defined by low and high TP inflow concentrations, respectively. In this study, olig‐otrophic status is defined as systems receiving inflow P‐loading less than 0.10 g m‐2 year‐1, and their P inputs are mainly derived from agricultural and stormwater runoff. Eutrophic treatment systems, on the other hand, are defined as those receiving inflow P‐loading higher than 0.20 g m2 year‐1, and their inputs are mainly derived from industrial and municipal wastewater. The comparability found between lakes and free surface water wetlands treatment systems raises the question: should we consider these wetlands “shallow lakes?”  相似文献   

2.
Lake Apopka in Florida, USA, is a large (area=124 km2), hypertrophic (mean total phosphorus=0.220 g/m3; mean chlorophylla=60 mg/m3) lake, with a large sedimentary store of available P (1635 × 106 g P). Phosphorus loading from floodplain farms (132 × 106 g P/yr) has been the primary cause of eutrophication. Assuming elimination of farm P loading, the Vollenweider model predicts a decline in equilibrium P concentration from 0.270 to 0.024 g/m3, if the P sedimentation coefficient (σ) remains constant. It is likely, however, that the value for σ will fall with the elimination of farm loading due to unabated internal P loading from the sediments. Under a worst-case scenario (σ=0), the model predicts that exportation of P from the lake via wetland filtration will greatly accelerate the lake's recovery. Recirculation of lake water through a 21-km2, created wetland and elimination of farm P loading is projected to result in a negative P balance for the lake (−23 × 106 g P/yr) leading to depletion of P stores in the lake in about 60 yr. The estimated cost of the project, $20 million, is less than 3% of the estimated cost of dredging. A 3.65-km2 demonstration project is underway to test and refine the wetland filtration technique. We believe the technique could be cost-effective for other hypertrophic lakes.  相似文献   

3.
The Tahoe City Wetland Treatment System (TCWTS) was constructed in 1997 to treat stormwater runoff from 23 ha of commercial, highway, and residential land use in the Lake Tahoe Basin. This subalpine, constructed, surface flow wetland treatment system consists of two cells in series, with a design water surface area of about 0.6 ha. Water quality monitoring from October 2002 through September 2003 was conducted with autosamplers at the inflow and outflow sites during 24 sampling events, with a median duration of 53 hours, representing 42 percent of total inflow to this wetland during the year. Monitoring data indicate an improvement of 49 percent or greater in effluent concentrations of dissolved phosphorus, nitrate, orthophosphorus, and total suspended solids. On average, event mean concentrations of total phosphorus were reduced from a median 279 μg/l at the inflow to 94 μg/l at the outflow. Event mean concentrations of total nitrogen were reduced from a median 1,599 μg/l at the inflow to 810 μg/l at the outflow. Net nutrient retention for the sampling period was estimated at 3 g phosphorus (P)/m2/y and 13 g nitrogen (N)/m2/y. Almost 4,000 kg of suspended sediment was captured by this wetland system during the year.  相似文献   

4.
ABSTRACT: One component of the filamentous algal community of a northern fen ecosystem in central Michigan was studied under conditions of nutrient enrichment by secondarily treated sewage effluent during one growing season. The productivity of Cladophora spp. measured by continuous flow bioassay was 2.6 g dry weight m day at the site of effluent addition compared to 0.085 g m day at the control site. Under conditions of nutrient enrichment, uptake by bioassay Cladophora spp. averaged 12 mg m?2day?1for phosphorus and 55 mg m?2day?1for nitrogen, compared to 0.01 mg m?2 day?1and 0.16 mg m?2day?1for phosphorus and nitrogen, respectively, in the control area. At the end of the growing season approximately 4.3 g N m?2 and 0.96 g P m?2were immobilized in Cladophora algal biomass. Algal growth temporarily immobilized 3.0 percent of the nitrogen and 1.0 percent of the phosphorus added as sewage effluent. Gross productivity of surface water in the fen averaged 1.5 g O2m?2day?1at the nutrient enriched site, compared to 0.5 g O2 m?2day?1at the control area. Gross productivity, community respiration and reaeration constant values in the fen were similar to data collected by other researchers in shallow water aquatic systems, but only at the fertilized sites.  相似文献   

5.
Phosphorus export coefficients (kg/ha/yr) from selected land covers, also called phosphorus yields, tend to get smaller as contributing areas get larger because some of the phosphorus mobilized on local fields gets trapped during transport to regional watershed outlets. Phosphorus traps include floodplains, wetlands, and lakes, which can then become impaired by eutrophication. The Sunrise River watershed in east central Minnesota, United States, has numerous lakes impaired by excess phosphorus. The Sunrise is tributary to the St. Croix River, whose much larger watershed is terminated by Lake St. Croix, also impaired by excess phosphorus. To support management of these impairments at both local and regional scales, a Soil and Water Assessment Tool (SWAT) model of the Sunrise watershed was constructed to estimate load reductions due to selected best management practices (BMPs) and to determine how phosphorus export coefficients scaled with contributing area. In this study, agricultural BMPs, including vegetated filter strips, grassed waterways, and reduction of soil‐phosphorus concentrations reduced phosphorus loads by 4‐20%, with similar percentage reductions at field and watershed spatial scales. Phosphorus export coefficients from cropland in rotation with corn, soybeans, and alfalfa decreased as a negative power function of contributing area, from an average of 2.12 kg/ha/yr at the upland field scale (~0.6 km2) to 0.63 kg/ha/yr at the major river basin scale (20,000 km2). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

6.
ABSTRACT: Few water budgets exist for specific types of wetlands such as peatlands, even though such information provides the basis from which to investigate linkages between wetlands and upland ecosystems. In this study, we first determined the water budget and then estimated nutrient loading from an upland farm field into a 1.5 ha, kettle-block peatland. The wetland contains highly anisotropic peat and has no distinct, active layer of groundwater flow. We estimated the depth of the active layer using Fick's law of diffusion and quantified groundwater flow using a chemical mass balance model. Evapotranspiration was determined using MORECS, a semi-physical model based on the Penman-Monteith approach. Precipitation and surface outflow were measured using physical means. Groundwater provided the major inflow, 84 percent (44,418 m3) in 1993 and 88 percent (68,311 m3) in 1994. Surface outflow represented 54 percent (28,763 m3) of total outflows in 1993 and 48 percent (37,078 m3) in 1994. A comparison of several published water budgets for wetlands and lakes showed that error estimates for hydrologic components in this study are well within the range of error estimates calculated in other studies. Groundwater inflow estimates and nutrient concentrations of three springs were used to estimate agricultural nutrient loading to the site. During the study period, nutrient loading into the peatland via groundwater discharge averaged 24.74 kg K ha-1, 1.83 kg total inorganic P had, and 21.81 kg NO3-N ha-1.  相似文献   

7.
This unique study evaluates the cumulative 16‐year lifetime performance of a wetland retention basin designed to treat stormwater runoff. Sediment cores were extracted prior to basin excavation and restoration to evaluate accretion rates and the origin of materials, retention characteristics of fine particulate matter, and overall pollutant removal efficiency. The sediment and organic layers together accreted 3.2 cm of depth per year, and 7.0 kg/m2/yr of inorganic material. Average annual accretion rates in g/m2/yr were as follows: C, 280; N, 17.7; P, 3.74; S, 3.80; Fe, 194; Mn, 2.68; Ca, 30.8; Mg, 30.7; K, 12.2; Na, 2.54; Zn, 0.858; Cu, 0.203; and B, 0.03. The accretion of C, N, P and sediment was comparable to nonwastewater treatment wetlands, overall, and relatively efficient for stormwater treatment wetlands. Comparison of particle size distribution between sediment cores and suspended solids in stormwater runoff indicated the wetland was effective at removing fine particles, with sediment cores containing 25% clay and 56% silt. A majority of the accretion of most metals and P could be attributed to efficient trapping of allochthonous material, while over half the accretion of C and N could be attributed to accumulation of autochthonous organic matter. Stormwater treatment was shown to be effective when physical properties of a retention basin are combined with the biological processes of a wetland, although sediment accretion can be relatively rapid.  相似文献   

8.
Recent appearance of cattail (Typha domingensis) within a southern Everglades slough—Upper Taylor Slough (Everglades National Park)—suggests ecosystem eutrophication. We analyze water quality, nutrient enrichment, and water management operations as potential drivers of eutrophication in Upper Taylor Slough. Further, we attempt to determine why surface water phosphorus, a parameter used commonly to monitor ecosystem health in the Everglades, did not serve as an early warning for eutrophication, which has broader implication for other restoration efforts. We found that surface water total phosphorus concentrations generally were below a 0.01 mg L−1 threshold determined to cause imbalances in flora and fauna, suggesting no ecosystem eutrophication. However, assessment of nutrient loads and loading rates suggest Upper Taylor Slough has experienced eutrophication and that continued total phosphorus loading through a point-source discharge was a major driver. These nutrient loads, combined with increases in hydroperiods, led to the expansion of cattail in Upper Taylor Slough. We recommend other metrics, such as nutrient loads, periphyton and arthropod community shifts, and sediment core analyses, for assessing ecosystem health. Monitoring surface water alone is not enough to indicate ecosystem stress.  相似文献   

9.
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.  相似文献   

10.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

11.
Wetlands in the Rainwater Basin in Nebraska are vulnerable to sediment accumulation from the surrounding watershed. Sediment accumulation has a negative impact on wetland quality by decreasing the depth and volume of water stored, and the plant community species composition and density growing in the wetland. The objective of this study was to determine the amount of sediment that has accumulated in five selected wetlands in the Rainwater Basin in Nebraska. Soil cores were taken at five or six locations along transects across each wetland. This study used the fly ash, which is generated by coal‐burning locomotives that were present generally in the late 1800s and early 1900s, as a marker to quantify the sediment deposition rates. The cores were divided into 5 cm sections and the soils were analyzed using a fly ash extraction and identification technique. Results indicate that the average depth of sediment ranged from 23.00 to 38.00 cm. The annual average depth of sediment accumulation ranged from 0.18 cm/yr to 0.29 cm/yr. The annual sediment accumulation rate from both wind erosion and water erosion in these five sampling wetlands was between 1.946 and 3.225 kg/m2/yr. The results of this research can be used to develop restoration plans for wetlands. The fly ash testing technology can also be applied to other areas with the railroads across the United States.  相似文献   

12.
The results of an investigation characterizing the nutrients and suspended solids contained in stormwater from Kranji Catchment in Singapore are reported in this paper. Stormwater samples were collected from 4 locations and analyzed for the following eleven analytes: TOC, DOC, TN, TDN, NH4+, NO2 + NO3 (NOx), TP, TDP, OP, SiO2 and TSS. Stormwater was sampled from catchments with various proportions of rural and urban land use, including forested areas, grassed areas, agricultural and residential and commercial areas. The event mean concentrations (EMCs) of nutrients and TSS from sampling stations which have agricultural land use activities upstream were found to be higher. Comparison of site EMCs (SMCs) with published data showed that the SMCs of the nutrients and TSS are generally higher than SMCs reported for forested areas but lower than published SMCs for urban areas. Positive correlations (p < 5%) were found between loading and peak flow at locations most impacted by ubanisation or agricultural activities. Correlation between loading and rainfall variables was less distinct. EMC was found to correlate less with rainfall and flow variables compared to pollutant loading. Unlike loading, no consistent pattern exists linking EMC to any particular storm or flow variable in any of the catchments. Lastly, positive correlations were obtained between the particulate forms of nitrogen and phosphorus and TSS.  相似文献   

13.
The performance of polyurethane rotating discs (RBC-1) versus polystyrene rotating discs (RBC-2) for the treatment of an up-flow anaerobic sludge blanket (UASB) reactor effluent fed with domestic wastewater was investigated. Both RBC units were operated at the same organic loading rate (OLR) of 10.5 gCOD/m2 d. and a hydraulic retention time (HRT) of 2.5 h. The residual values of COD fractions (CODsuspended, CODcolloidal and CODsoluble) in the treated effluent of RBC-1 and RBC-2 were similar. However, the removal efficiency of ammonia in the RBC-1 (87 ± 4%) was significantly higher than that found for RBC-2 i.e. 24 ± 6%. Moreover, RBC-1 achieved a substantial removal efficiency of 99.0 ± 1% for Escherichia coli (E. coli), while RBC-2 removed 91.2 ± 0.3%. Based on these results, optimization of RBC-1 treating UASB reactor effluent was extensively performed. The RBC-1 was operated at an OLR's of 4.0, 11 and 23 gCOD/m2 d. The results obtained showed that increasing the OLR from 11.0 to 23.0 gCOD/m2 d and decreasing the HRT from 2.5 to 1.25 h significantly declined the effluent quality of CODtotal and ammonia. However, the residual values of CODtotal and ammonia remained unaffected when increasing the OLR from 4.0 to 11.0 gCOD/m2 d and by decreasing the HRT from 5 to 2.5 h. Bacteriological examination showed that the mean residual count of E. coli remained at a level of 104/100 ml, in the effluent of RBC-1 independent on the imposed HRT. Accordingly, it is recommended to operate RBC-1 for treatment of anaerobically pre-treated sewage at an OLR of 11 gCOD/m2 d and an HRT of 2.5 h.A feed-less (ammonia limitation) period of 9.0 days followed by 9.0 days feeding with high OLR of 26 gCOD/m2 d. (raw sewage) was investigated to elaborate, if the nitrifiers of the RBC-1 are capable to convert ammonia to nitrate after totally 18 days when retuning back to the normal operating conditions. The results of the experiment clearly show a strong and immediate detrimental effect of imposing high OLR of 26 gCOD/m2 d on the nitrification process in the nitrifying RBC unit. However, after returning back to the original OLR of 10.6 gCOD/m2 d, the nitrification efficiency in the RBC unit was recovered within 2–3 days.  相似文献   

14.
Nitrogen and phosphorus cycling in a eutrophic Louisiana freshwater lake system (Lac des Allemands) was studied. Nutrients from runoff entering the lake, as well as sediment-interstitial and lake water nitrogen and phosphorus fractions, were measured seasonally. Sedimentation rates in the lake were determined using137Cs dating.Phosphorus levels in the lake were found to be largely dependent on concentrations in the incoming bayou water from upland drainage. Lake water concentrations appear to respond to fluctuations in incoming waters. Laboratory equilibrium studies showed bottom sediments in the lake are a major sink for the incoming dissolved orthophosphate phosphorus. Total nitrogen concentrations in the lake water generally exceeded incoming runoff concentrations, suggesting fixation by the large blue-green algae population in the lake as being the major source of nitrogen to the system.Sedimentation ranged from 0.44 cm/year to 0.81 cm/year, depending on the proximity to the inlet bayous. Even though the lake is eutrophic the sediment served as a buffer by removing large amounts of carbon, nitrogen, and phosphorus through sedimentation processes. Carbon, nitrogen, and phosphorus were accumulating in the sediment at rates of 60, 7.1, and 1.1 g/m2/year, respectively.The water quality of the lake is likely to continue to decline unless measures are taken to reduce municipal, industrial, and agricultural inputs of phosphorus into the lake.  相似文献   

15.
ABSTRACT: Coastal watersheds in the southeastern United States are rapidly changing due to population growth and attendant increases in residential development, industry, and tourism related commerce. This research examined spatial and temporal patterns of nutrient concentrations in streams from 10 small watersheds (< 4 km2) that drain into Murrells Inlet (impacted) and North Inlet (pristine), two high salinity estuaries along the South Carolina coast. Monthly grab samples were collected during baseflow during 1999 and analyzed for total and dissolved inorganic and organic forms of nitrogen and phosphorus. Data were grouped into forested wetland creeks (representing predevelopment reference sites), urban creeks, and urban ponds. DON and NH4 concentrations were greater in forested streams than in urban streams. NO3 and TP concentrations were greatest in urban streams. Seasonally, concentrations were highest during summer for TN, NH4, DON, and TP, while NO3 concentrations were greatest during winter. Nutrient ratios clearly highlighted the reduction in organic nitrogen due to coastal development. Multiple regression models to predict instream nutrient concentrations from land use in Murrells Inlet suggest that effects are not significant (small r2). The findings indicate that broad land use/land cover classes cannot be used to predict nutrient concentrations in streams in the very small watersheds in our study areas.  相似文献   

16.
A mechanistic understanding of the effects of nutrient enrichment in lotic systems has been advanced over the last two decades such that identification of management thresholds for the prevention of eutrophication is now possible. This study describes relationships among primary nutrients (phosphorus and nitrogen), benthic chlorophyll a concentrations, daily dissolved oxygen (DO) concentrations, and the condition of macroinvertebrate and fish communities in small rivers and streams in Ohio, USA. Clear associations between nutrients, secondary response indicators (i.e., benthic chlorophyll and DO), and biological condition were found, and change points between the various indicators were identified for use in water quality criteria for nutrients in small rivers and streams (<1300 km2). A change point in benthic chlorophyll a density was detected at an inorganic nitrogen concentration of 0.435 mg/l (±0.599 SD), and a total phosphorus (TP) concentration of 0.038 mg/l (±0.085 SD). Daily variation in DO concentration was significantly related to benthic chlorophyll concentration and canopy cover, and a change point in 24-h DO concentration range was detected at a benthic chlorophyll level of 182 mg/m2. The condition of macroinvertebrate communities was related to benthic chlorophyll concentration and both minimum and 24-h range of DO concentration. The condition of fish communities was best explained by habitat quality. The thresholds found in relationships between the stressor and the response variables, when interpreted in light of the uncertainty surrounding individual change points, may now serve as a framework for nutrient criteria in water quality standards.  相似文献   

17.
We conducted statistical analyses of a 10-year record of stream nutrient and sediment concentrations for 17 streams in the greater Seattle region to determine the impact of urban non-point-source pollutants on stream water quality. These catchments are dominated by either urban (22–87%) or forest (6–73%) land cover, with no major nutrient point sources. Stream water phosphorus concentrations were moderately strongly (r2=0.58) correlated with catchment land-cover type, whereas nitrogen concentrations were weakly (r2=0.19) and nonsignificantly (at < 0.05) correlated with land cover. The most urban streams had, on average, 95% higher total phosphorus (TP) and 122% higher soluble reactive phosphorus (SRP) and 71% higher turbidity than the most forested streams. Nitrate (NO3), ammonium (NH4), and total suspended solids (TSS) concentrations did not vary significantly with land cover. These results suggest that urbanization markedly increased stream phosphorus concentrations and modestly increased nitrogen concentrations. However, nutrient concentrations in Seattle region urban streams are significantly less than those previously reported for agricultural area streams.  相似文献   

18.
A new contact oxidation filtration separation integrated bioreactor (CFBR) was used to treat municipal wastewater. The CFBR was made up of a biofilm reactor (the upper part of the CFBR) and a gravitational filtration bed (the lower part of the CFBR). Polyacrylonitrile balls (50 mm diameter, 237 m2/m3 specific surface, 90% porosity, and 50.2% packing rate) were filled into the biofilm reactor as biofilm attaching materials and anthracite coal (particle size 1–2 mm, packing density 0.947 g/cm3, non-uniform coefficient (K80 = d80/d10) < 2.0) was placed into the gravitational filtration bed as filter media. At an organic volumetric loading rate of 2.4 kg COD/(m3 d) and an initial filtration velocity of 5 m/h in the CFBR, the average removal efficiencies of COD, ammonia nitrogen, total nitrogen and turbidity were 90.6%, 81.4%, 64.6% and 96.7% respectively, but the treatment process seemed not to be effective in phosphorus removal. The average removal efficiency of total phosphorus was 60.1%. Additionally, the power consumption of the CFBR was less than 0.15 kWh/m3 of wastewater treated, and less than 1.5 kWh/kg BOD5 removal.  相似文献   

19.
Phosphorus loading from precipitation and more than a dozen tributaries of Big Beat Lake, Woman, was determined for the period from January to December 1978. Direct precipitation contributed 1120 kg·P·yr-1 (0.096 g P·m-2·yr-1) while tributary runoff contributed 21,560 kg for a total P loading of 1.84 g P·m-2 Rathbone creek, although accounting for only 4 percent of the hydro-logic input to Big Bear Lake, contributed >27 percent of the annual phosphorus load. Phosphorus loading increased with increased impervious geology and increased development. Nitrogen loading exhibited similar loading patterns. Big Beat Lake is currently eutrophic and is likely to remain eutrophic. Calculations based on Vollenweider's critical phosphorus loading concept indicated that tributary P-loading would have to be reduced by >95 percent to achieve mesotrophic conditions. The completion of Big Bear Dam created a “naturally” eutrophic re mix which dl require proper management to enhance its resource potential.  相似文献   

20.
Although wetlands are known to be sinks for nitrogen (N) and phosphorus (P), their function in urban watersheds remains unclear. We analyzed water and nitrate (NO3?) and phosphate (PO43?) dynamics during precipitation events in two oxbow wetlands that were created during geomorphic stream restoration in Baltimore County, Maryland that varied in the nature and extent of connectivity to the adjacent stream. Oxbow 1 (Ox1) received 1.6‐4.2% and Oxbow 2 (Ox2) received 4.2‐7.4% of cumulative streamflow during storm events from subsurface seepage (Ox1) and surface flow (Ox2). The retention time of incoming stormwater ranged from 0.2 to 6.7 days in Ox1 and 1.8 to 4.3 days in Ox2. Retention rates in the wetlands ranged from 0.25 to 2.74 g N/m2/day in Ox1 and 0.29 to 1.94 g N/m2/day in Ox2. Percent retention of the NO3?‐N load that entered the wetlands during the storm events ranged from 64 to 87% and 23 to 26%, in Ox1 and Ox2, respectively. During all four storm events, Ox1 and Ox2 were a small net source of dissolved PO43? to the adjacent stream (i.e., more P exited than entered the wetland), releasing P at a rate of 0.23‐20.83 mg P/m2/day and 3.43‐24.84 mg P/m2/day, respectively. N and P removal efficiency of the oxbows were regulated by hydrologic connectivity, hydraulic loading, and retention time. Incidental oxbow wetlands have potential to receive urban stream and storm flow and to be significant N sinks, but they may be sources of P in urban watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号