首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Coastal watersheds in the southeastern United States are rapidly changing due to population growth and attendant increases in residential development, industry, and tourism related commerce. This research examined spatial and temporal patterns of nutrient concentrations in streams from 10 small watersheds (< 4 km2) that drain into Murrells Inlet (impacted) and North Inlet (pristine), two high salinity estuaries along the South Carolina coast. Monthly grab samples were collected during baseflow during 1999 and analyzed for total and dissolved inorganic and organic forms of nitrogen and phosphorus. Data were grouped into forested wetland creeks (representing predevelopment reference sites), urban creeks, and urban ponds. DON and NH4 concentrations were greater in forested streams than in urban streams. NO3 and TP concentrations were greatest in urban streams. Seasonally, concentrations were highest during summer for TN, NH4, DON, and TP, while NO3 concentrations were greatest during winter. Nutrient ratios clearly highlighted the reduction in organic nitrogen due to coastal development. Multiple regression models to predict instream nutrient concentrations from land use in Murrells Inlet suggest that effects are not significant (small r2). The findings indicate that broad land use/land cover classes cannot be used to predict nutrient concentrations in streams in the very small watersheds in our study areas.  相似文献   

2.
ABSTRACT: Models for the prediction of chlorophyll a concentrations were developed and tested using data on 223 Florida lakes. A statistical analysis showed that the best model was log (Chl a) =?2.49 + 0.269 log (TP) + 1.06 log (TN) or log (Chl a) =?2.49 + 1.06 log (TN/TP) + 1.33 log (TP) where Chl a is the chlorophyll a concentration (mg m-3), TP is the total phosphorus concentration (mg m-3) and TN is the total nitrogen concentration (mg m-3). The model yields unbiased estimates of chlorophyll a concentrations over a wide range of lake types and has a 95 percent confidence interval of 29–319 percent of the calculated chlorophyll a concentrations. Other models, especially the published Dillon-Rigler and Jones-Bachmann phosphorus-chlorophyll models, are less precise when applied to Florida lakes. The data support the hypothesis that nitrogen is an important limiting nutrient in hypereutrophic lakes.  相似文献   

3.
This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHLFG), coarse-grained stable substrate as in rock or wood (CHLCG), and water column (CHLS). Stream and riparian habitat were characterized at each site. TP ranged from 0.004–2.69 mg/l and TN from 0.15–21.5 mg/l, with TN concentrations highest in Nebraska and Indiana streams and TP highest in Nebraska. Benthic algal biomass ranged from 0.47–615 mg/m2, with higher values generally associated with coarse-grained substrate. Seston chlorophyll ranged from 0.2–73.1 μg/l, with highest concentrations in Nebraska. Regression models were developed to predict algal biomass as a function of TP and/or TN. Seven models were statistically significant, six for TP and one for TN; r 2 values ranged from 0.03 to 0.44. No significant regression models could be developed for the two study areas in the Midwest. Model performance increased when stream habitat variables were incorporated, with 12 significant models and an increase in the r 2 values (0.16–0.54). Water temperature and percent riparian canopy cover were the most important physical variables in the models. While models that predict algal chlorophyll a as a function of nutrients can be useful, model strength is commonly low due to the overriding influence of stream habitat. Results from our study are presented in context of a nutrient-algal biomass conceptual model.  相似文献   

4.
Maret, Terry R., Christopher P. Konrad, and Andrew W. Tranmer, 2010. Influence of Environmental Factors on Biotic Responses to Nutrient Enrichment in Agricultural Streams. Journal of the American Water Resources Association (JAWRA) 46(3):498-513. DOI: 10.1111/j.1752-1688.2010.00430.x Abstract: The influence of environmental factors on biotic responses to nutrients was examined in three diverse agricultural regions of the United States. Seventy wadeable sites were selected along an agricultural land use gradient while minimizing natural variation within each region. Nutrients, habitat, algae, macroinvertebrates, and macrophyte cover were sampled during a single summer low-flow period in 2006 or 2007. Continuous stream stage and water temperature were collected at each site for 30 days prior to sampling. Wide ranges of concentrations were found for total nitrogen (TN) (0.07-9.61 mg/l) and total phosphorus (TP) (<0.004-0.361 mg/l), but biotic responses including periphytic and sestonic chlorophyll a (RCHL and SCHL, respectively), and percent of stream bed with aquatic macrophyte (AQM) growth were not strongly related to concentrations of TN or TP. Pearson’s coefficient of determination (R2) for nutrients and biotic measures across all sites ranged from 0.08 to 0.32 and generally were not higher within each region. The biotic measures (RCHL, SCHL, and AQM) were combined in an index to evaluate eutrophic status across sites that could have different biotic responses to nutrient enrichment. Stepwise multiple regression identified TN, percent canopy, median riffle depth, and daily percent change in stage as significant factors for the eutrophic index (R2 = 0.50, p < 0.001). A TN threshold of 0.48 mg/l was identified where eutrophic index scores became less responsive to increasing TN concentrations, for all sites. Multiple plant growth indicators should be used when evaluating eutrophication, especially when streams contain an abundance of macrophytes.  相似文献   

5.
ABSTRACT: A main water quality concern is accelerated eutrophication of fresh waters from nonpoint source pollution, particularly nutrient transport in surface runoff from agricultural areas and confined animal feeding operations. This study examined nutrient and β17‐estradiol concentrations in runoff from small plots where six poultry litters were applied at a rate of about 67 kg/ha of total phosphorus (TP). The six poultry litter treatments included pelleted compost, pelleted litter, raw litter, alum (treated) litter, pelleted alum litter, and normal litter (no alum). Four replicates of the six poultry litter treatments and a control (plots without poultry litter application) were used in this study. Rainfall simulations at intensity of 50 mm/hr were conducted immediately following poultry litter application to the plots and again 30 days later. Composite runoff samples were analyzed for soluble reactive phosphorus (SRP), ammonia (NH4), nitrate (NO3), TP, total nitrogen (TN) and β17‐estradiol concentrations. In general, poultry litter applications increased nutrient and β17‐estradiol concentrations in runoff water. Ammonia and P concentrations in runoff water from the first simulation were correlated to application rates of water extractable NH4 (R2= 0.70) and P (R2= 0.68) in the manure. Results suggest that alum applications to poultry litter in houses in between flocks is an effective best management practice for reducing phosphorus (P) and β17‐estradiol concentrations in runoff and that pelleted poultry litters may increase the potential for P and β17‐estradiol loss in runoff water. Inferences regarding pelleted poultry litters should be viewed cautiously, because the environmental consequence of pelleting poultry litters needs additional investigation.  相似文献   

6.
The relationship between nutrient removal and loading rate was examined using data from five forested wetlands in Louisiana that have received secondarily treated effluent from 3 to 60 years. Loading rates ranged from 0.65 to 26.80 g/m2/yr for total nitrogen and 0.18 to 8.96 g/m2/yr for total phosphorus. At loading rates below 20 g/m2/yr, total nitrogen concentrations in surface waters of Louisiana forested wetlands were reduced to background concentrations (i.e., ≤3 mg/l). Similarly, at loading rates below 2 g/m2/yr, total phosphorus concentrations were also generally reduced to background concentrations (i.e., ≤1 mg/l). These data demonstrate that freshwater forested wetlands can reduce nutrient concentrations in treated effluent to background concentrations present in relatively undisturbed wetlands. An understanding of the relationship between loading rates and nutrient removal in natural wetlands is important, particularly in Louisiana where discharges of fresh water are being used in ecosystem restoration.  相似文献   

7.
Total annual nutrient loads are a function of both watershed characteristics and the magnitude of nutrient mobilizing events. We investigated linkages among land cover, discharge and total phosphorus (TP) concentrations, and loads in 25 Kansas streams. Stream monitoring locations were selected from the Kansas Department of Health and Environment stream chemistry long-term monitoring network sites at or near U.S. Geological Survey stream gauges. We linked each sample with concurrent discharge data to improve our ability to estimate TP concentrations and loads across the full range of possible flow conditions. Median TP concentration was strongly linked (R 2 = 76%) to the presence of cropland in the riparian zones of the mostly perennial streams. At baseflow, discharge data did not improve prediction of TP, but at high flows discharge was strongly linked to concentration (a threshold response occurred). Our data suggest that on average 88% of the total load occurred during the 10% of the time with the greatest discharge. Modeled reductions in peak discharges, representing increased hydrologic retention, predicted greater decreases in total annual loads than reductions of ambient concentrations because high discharge and elevated phosphorus concentrations had multiplicative effects. No measure of land use provided significant predictive power for concentrations when discharge was elevated or for concentration rise rates under increasing discharge. These results suggest that reductions of baseflow concentrations of TP in streams without wastewater dischargers may be managed by reductions of cropland uses in the riparian corridor. Additional measures may be needed to manage TP annual loads, due to the large percentage of the TP load occurring during a few high-flow events each year.  相似文献   

8.
We conducted statistical analyses of a 10-year record of stream nutrient and sediment concentrations for 17 streams in the greater Seattle region to determine the impact of urban non-point-source pollutants on stream water quality. These catchments are dominated by either urban (22–87%) or forest (6–73%) land cover, with no major nutrient point sources. Stream water phosphorus concentrations were moderately strongly (r2=0.58) correlated with catchment land-cover type, whereas nitrogen concentrations were weakly (r2=0.19) and nonsignificantly (at < 0.05) correlated with land cover. The most urban streams had, on average, 95% higher total phosphorus (TP) and 122% higher soluble reactive phosphorus (SRP) and 71% higher turbidity than the most forested streams. Nitrate (NO3), ammonium (NH4), and total suspended solids (TSS) concentrations did not vary significantly with land cover. These results suggest that urbanization markedly increased stream phosphorus concentrations and modestly increased nitrogen concentrations. However, nutrient concentrations in Seattle region urban streams are significantly less than those previously reported for agricultural area streams.  相似文献   

9.
ABSTRACT: The applicability of empirical relationships governing phosphorus (P) retention and nutrient assimilation in lakes and reservoirs was extended to include free surface water wetland treatment systems. Mixed reactor models have been used in lakes to predict steady state P concentration, characterize trophic state, compare P‐dynamics, and predict permissible P‐loading rates. Applying lake models to free surface water wetlands treatment systems, it was found that: sedimentation rates, loading rates, and settling velocity in these wetlands, and their typology are comparable to their lake counterparts. The analyses also suggest that phosphorus removal efficiency in a free surface water wetland treatment system is independent of trophic status, and similar to lakes, these wetlands can be classified according to their trophic state. Oligo‐and eutrophic wetland treatment systems can be defined by low and high TP inflow concentrations, respectively. In this study, olig‐otrophic status is defined as systems receiving inflow P‐loading less than 0.10 g m‐2 year‐1, and their P inputs are mainly derived from agricultural and stormwater runoff. Eutrophic treatment systems, on the other hand, are defined as those receiving inflow P‐loading higher than 0.20 g m2 year‐1, and their inputs are mainly derived from industrial and municipal wastewater. The comparability found between lakes and free surface water wetlands treatment systems raises the question: should we consider these wetlands “shallow lakes?”  相似文献   

10.
Human Influences on Water Quality in Great Lakes Coastal Wetlands   总被引:2,自引:0,他引:2  
A better understanding of relationships between human activities and water chemistry is needed to identify and manage sources of anthropogenic stress in Great Lakes coastal wetlands. The objective of the study described in this article was to characterize relationships between water chemistry and multiple classes of human activity (agriculture, population and development, point source pollution, and atmospheric deposition). We also evaluated the influence of geomorphology and biogeographic factors on stressor-water quality relationships. We collected water chemistry data from 98 coastal wetlands distributed along the United States shoreline of the Laurentian Great Lakes and GIS-based stressor data from the associated drainage basin to examine stressor-water quality relationships. The sampling captured broad ranges (1.5–2 orders of magnitude) in total phosphorus (TP), total nitrogen (TN), dissolved inorganic nitrogen (DIN), total suspended solids (TSS), chlorophyll a (Chl a), and chloride; concentrations were strongly correlated with stressor metrics. Hierarchical partitioning and all-subsets regression analyses were used to evaluate the independent influence of different stressor classes on water quality and to identify best predictive models. Results showed that all categories of stress influenced water quality and that the relative influence of different classes of disturbance varied among water quality parameters. Chloride exhibited the strongest relationships with stressors followed in order by TN, Chl a, TP, TSS, and DIN. In general, coarse scale classification of wetlands by morphology (three wetland classes: riverine, protected, open coastal) and biogeography (two ecoprovinces: Eastern Broadleaf Forest [EBF] and Laurentian Mixed Forest [LMF]) did not improve predictive models. This study provides strong evidence of the link between water chemistry and human stress in Great Lakes coastal wetlands and can be used to inform management efforts to improve water quality in Great Lakes coastal ecosystems.  相似文献   

11.
A mechanistic understanding of the effects of nutrient enrichment in lotic systems has been advanced over the last two decades such that identification of management thresholds for the prevention of eutrophication is now possible. This study describes relationships among primary nutrients (phosphorus and nitrogen), benthic chlorophyll a concentrations, daily dissolved oxygen (DO) concentrations, and the condition of macroinvertebrate and fish communities in small rivers and streams in Ohio, USA. Clear associations between nutrients, secondary response indicators (i.e., benthic chlorophyll and DO), and biological condition were found, and change points between the various indicators were identified for use in water quality criteria for nutrients in small rivers and streams (<1300 km2). A change point in benthic chlorophyll a density was detected at an inorganic nitrogen concentration of 0.435 mg/l (±0.599 SD), and a total phosphorus (TP) concentration of 0.038 mg/l (±0.085 SD). Daily variation in DO concentration was significantly related to benthic chlorophyll concentration and canopy cover, and a change point in 24-h DO concentration range was detected at a benthic chlorophyll level of 182 mg/m2. The condition of macroinvertebrate communities was related to benthic chlorophyll concentration and both minimum and 24-h range of DO concentration. The condition of fish communities was best explained by habitat quality. The thresholds found in relationships between the stressor and the response variables, when interpreted in light of the uncertainty surrounding individual change points, may now serve as a framework for nutrient criteria in water quality standards.  相似文献   

12.
Nutrient inputs generally are increased by human-induced land use changes and can lead to eutrophication and impairment of surface waters. Understanding the scale at which land use influences nutrient loading is necessary for the development of management practices and policies that improve water quality. The authors assessed the relationships between land use and stream nutrients in a prairie watershed dominated by intermittent stream flow in the first-order higher elevation reaches. Total nitrogen, nitrate, and phosphorus concentrations were greater in tributaries occupying the lower portions of the watershed, closely mirroring the increased density of row crop agriculture from headwaters to lower-elevation alluvial areas. Land cover classified at three spatial scales in each sub-basin above sampling sites (riparian in the entire catchment, catchment land cover, and riparian across the 2 km upstream) was highly correlated with variation in both total nitrogen (r2 = 53%, 52%, and 49%, respectively) and nitrate (r2 = 69%, 65%, and 56%, respectively) concentrations among sites. However, phosphorus concentrations were not significantly associated with riparian or catchment land cover classes at any spatial scale. Separating land use from riparian cover in the entire watershed was difficult, but riparian cover was most closely correlated with in-stream nutrient concentrations. By controlling for land cover, a significant correlation of riparian cover for the 2 km above the sampling site with in-stream nutrient concentrations could be established. Surprisingly, land use in the entire watershed, including small intermittent streams, had a large influence on average downstream water quality although the headwater streams were not flowing for a substantial portion of the year. This suggests that nutrient criteria may not be met only by managing permanently flowing streams.  相似文献   

13.
Determining reference concentrations in rivers and streams is an important tool for environmental management. Reference conditions for eutrophication-related water variables are unavailable for Brazilian freshwaters. We aimed to establish reference baselines for São Paulo State tropical rivers and streams for total phosphorus (TP) and nitrogen (TN), nitrogen-ammonia (NH4 +) and Biochemical Oxygen Demand (BOD) through the best professional judgment and the trisection methods. Data from 319 sites monitored by the São Paulo State Environmental Company (2005 to 2009) and from the 22 Water Resources Management Units in São Paulo State were assessed (N = 27,131). We verified that data from different management units dominated by similar land cover could be analyzed together (Analysis of Variance, P = 0.504). Cumulative frequency diagrams showed that industrialized management units were characterized by the worst water quality (e.g. average TP of 0.51 mg/L), followed by agricultural watersheds. TN and NH4 + were associated with urban percentages and population density (Spearman Rank Correlation Test, P < 0.05). Best professional judgment and trisection (median of lower third of all sites) methods for determining reference concentrations showed agreement: 0.03 &; 0.04 mg/L (TP), 0.31 &; 0.34 mg/L (TN), 0.06 &; 0.10 mg-N/L (NH4 +) and 2 &; 2 mg/L (BOD), respectively. Our reference concentrations were similar to TP and TN reference values proposed for temperate water bodies. These baselines can help with water management in São Paulo State, as well as providing some of the first such information for tropical ecosystems.  相似文献   

14.
Maupin, Molly A. and Tamara Ivahnenko, 2011. Nutrient Loadings to Streams of the Continental United States From Municipal and Industrial Effluent. Journal of the American Water Resources Association (JAWRA) 47(5):950‐964. DOI: 10.1111/j.1752‐1688.2011.00576.x Abstract: Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using “typical pollutant concentrations” to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point‐source nutrient loads. These loads can be used to inform a wide range of water‐quality management, watershed modeling, and research efforts at multiple scales.  相似文献   

15.
ABSTRACT: Five types of land use/land covers in the West Tiaoxi watershed of China were studied for nutrient losses in artificial rainstorm runoff. A self‐designed rainfall simulator was used. In situ rainfall simulations were used to: (1) compare the concentrations of nitrogen and phosphorous in different land use/land covers and (2) evaluate the flux of nitrogen and phosphorous export from runoff and sediment in various types of land use/land covers. Three duplicated experiments were carried out under rain intensity of 2 mm/min, each lasting 32 minutes on a 3 m2 plot. Characteristics of various species of nitrogen and phosphorous in runoff and sediment were investigated. The results showed that the concentrations of total nitrogen (TN) and total phosphorous (TP) were greatest in runoff from mulberry trees and smallest from pine forest. The TN and TP export was mainly from suspended particulate in runoff. TN and TP exports from the top 10 cm layer of five types of land use/land covers were estimated as high as 4.66 to 9.40 g/m2 and 2.57 to 4.89 g/m2, respectively, of which exports through sediment of runoff accounted for more than 90 percent and 97 percent. The rate of TN and TP exports ranged from 2.68 to approximately 14.48 and 0.45 to approximately 4.11 mg/m2/min in runoff; these rates were much lower than those of 100.01 to approximately 172.67 and 72.82 to approximately 135.96 mg/m2/min in the runoff sediment.  相似文献   

16.
The Little Miami River (LMR) basin, dominated by agriculture, contains two geologically-distinct regions; a glaciated northern till plain with soils three times more permeable than a southern, pre-Wisconsinan drift plain. The influences of two landscape measures, percent row crop cover (%RCC, computed at three spatial scales), and soil permeability (PERM), on baseflow nutrient concentrations were modeled using linear regressions. Quarterly water samples collected for four years were analyzed for nitrate-N (NN), Kjeldahl-N (KN), total-N (TN), and total-P (TP). In till plain streams (n = 17), NN concentrations were 8.5-times greater than drift plain streams (n = 18), but KN and TP were 20–40% lower at comparable %RCC. These differences resulted in TN/TP molar ratios >80 in till plain streams, but <6 in drift plain streams. For till plain steams regression models based on %RCC accounted for 79% of the variance in NN concentrations but only 27% in drift plain streams. However, regressions on %RCC accounted for 68–75% of the KN and TP concentration variance in the drift plain streams but essentially none in the till plain. Catchment PERM influenced the regional NN/KN ratios which were 10-fold higher in the drift plain streams. For both till and drift streams the catchment scale %RCC gave the best predictions of NN, a water soluble anion, but the smaller spatial scales produced better models for insoluble nutrient species (e.g., KN and TP). Published literature on Ohio streams indicates that these inter-regional differences in nutrient ratios have potential implications for aquatic biota in the receiving streams.  相似文献   

17.
ABSTRACT: The important ecological and hydrological roles of wetlands are widely recognized, but the geomorphic functions of wetlands are also critical. Wetlands can be defined in geomorphic, as well as in hydrological or biological terms, and a geomorphic definition of wetlands is proposed. An analysis of fluvial sediment budget studies shows that wetlands typically serve as short-term sediment sinks or longer-term sediment storage sites. In ten study basins of various sizes, an estimated 14 to 58 percent of the total upland sediment production is stored in alluvial wetland or other aquatic environments. Of the sediment reaching streams, 29 to 93 percent is stored in alluvial wetland or channel environments. For basins of more than 100 km2, more than 15 percent of total upland sediment production and more than 50 percent of sediment reaching streams is deposited in wetlands. The data underestimates the magnitude of wetland sediment storage due to the lack of data from large river systems. A theoretical analysis of river channel sediment delivery shows that wetland and aquatic sediment storage is inevitable in fluvial systems and systematically related to basin size. Results suggest that wetlands should be managed in the context of drainage basins, rather than as discrete, independent units.  相似文献   

18.
We examined nitrogen transport and wetland primary production along hydrologic flow paths that link nitrogen‐fixing alder (Alnus spp.) stands to downslope wetlands and streams in the Kenai Lowlands, Alaska. We expected that nitrate concentrations in surface water and groundwater would be higher on flow paths below alder. We further expected that nitrate concentrations would be higher in surface water and groundwater at the base of short flow paths with alder and that streamside wetlands at the base of alder‐near flow paths would be less nitrogen limited than wetlands at the base of long flow paths with alder. Our results showed that groundwater nitrate‐N concentrations were significantly higher at alder‐near sites than at no‐alder sites, but did not differ significantly between alder‐far sites and no‐alder sites or between alder‐far sites and alder‐near sites. A survey of 15N stable isotope signatures in soils and foliage in alder‐near and no‐alder flow paths indicated the alder‐derived nitrogen evident in soils below alder is quickly integrated downslope. Additionally, there was a significant difference in the relative increase in plant biomass after nitrogen fertilization, with the greatest increase occurring in the no‐alder sites. This study demonstrates that streamside wetlands and streams are connected to the surrounding landscapes through hydrologic flow paths, and flow paths with alder stands are potential “hot spots” for nitrogen subsidies at the hillslope scale.  相似文献   

19.
We sampled 41 sites on 34 nonwadeable rivers that represent the types of rivers in Wisconsin, and the kinds and intensities of nutrient and other anthropogenic stressors upon each river type. Sites covered much of United States Environmental Protection Agency national nutrient ecoregions VII—Mostly Glaciated Dairy Region, and VIII—Nutrient Poor, Largely Glaciated upper Midwest. Fish, macroinvertebrates, and three categories of environmental variables including nutrients, other water chemistry, and watershed features were collected using standard protocols. We summarized fish assemblages by index of biotic integrity (IBI) and its 10 component measures, and macroinvertebrates by 2 organic pollution tolerance and 12 proportional richness measures. All biotic and environmental variables represented a wide range of conditions, with biotic measures ranging from poor to excellent status, despite nutrient concentrations being consistently higher than reference concentrations reported for the regions. Regression tree analyses of nutrients on a suite of biotic measures identified breakpoints in total phosphorus (~0.06 mg/l) and total nitrogen (~0.64 mg/l) concentrations at which biotic assemblages were consistently impaired. Redundancy analyses (RDA) were used to identify the most important variables within each of the three environmental variable categories, which were then used to determine the relative influence of each variable category on the biota. Nutrient measures, suspended chlorophyll a, water clarity, and watershed land cover type (forest or row-crop agriculture) were the most important variables and they explained significant amounts of variation within the macroinvertebrate (R 2 = 60.6%) and fish (R 2 = 43.6%) assemblages. The environmental variables selected in the macroinvertebrate model were correlated to such an extent that partial RDA analyses could not attribute variation explained to individual environmental categories, assigning 89% of the explained variation to interactions among the categories. In contrast, partial RDA attributed much of the explained variation to the nutrient (25%) and other water chemistry (38%) categories for the fish model. Our analyses suggest that it would be beneficial to develop criteria based upon a suite of biotic and nutrient variables simultaneously to deem waters as not meeting their designated uses.  相似文献   

20.
During a 1-year period, we sampled stream water total phosphorus (TP) concentrations daily and soluble reactive phosphorus (SRP) concentrations weekly in four Seattle area streams spanning a gradient of forested to urban-dominated land cover. The objective of this study was to develop time series models describing stream water phosphorus concentration dependence on seasonal variation in stream base flows, short-term flow fluctuations, antecedent flow conditions, and rainfall. Stream water SRP concentrations varied on average by ±18% or ±5.7 μg/L from one week to another, whereas TP varied ±48% or ±32.5 μg/L from one week to another. On average, SRP constituted about 47% of TP. Stream water SRP concentrations followed a simple sine-wave annual cycle with high concentrations during the low-flow summer period and low concentrations during the high-flow winter period in three of the four study sites. These trends are probably due to seasonal variation in the relative contributions of groundwater and subsurface flows to stream flow. In forested Issaquah Creek, SRP concentrations were relatively constant throughout the year except during the fall, when a major salmon spawning run occurred in the stream and SRP concentrations increased markedly. Stream water SRP concentrations were statistically unrelated to short-term flow fluctuations, antecedent flow conditions, or rainfall in each of the study streams. Stream water TP concentrations are highly variable and strongly influenced by short-term flow fluctuations. Each of the processes assessed had statistically significant correlations with TP concentrations, with seasonal base flow being the strongest, followed by antecedent flow conditions, short-term flow fluctuations, and rainfall. Times series models for each individual stream were able to predict ∼70% of the variability in the SRP annual cycle in three of the four streams (r2 = 0.57–0.81), whereas individual TP models explained ∼50% of the annual cycle in all streams (r2 = 0.39–0.59). Overall, time series models for SRP and TP dynamics explained 82% and 76% of the variability for these variables, respectively. Our results indicate that SRP, the most biologically available and therefore most important phosphorus fraction, has simpler and easier-to-predict seasonal and weekly dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号