首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
二恶英及类似有毒有害物的处理技术   总被引:2,自引:0,他引:2  
二恶英、多氯联苯、多环芳香烃及化学武器等有毒有害物的处理技术已取得长足进展。这些有毒有害物的处理技术可概括为物理方法、化学方法、物理化学方法和生物降解法。本文从概念、应用场合、分解效率以及操作条件等方面对这些方法分别进行了介绍,重点介绍和评述了吸附和催化法,以及应用前景很好的生物降解技术。  相似文献   

2.
二(口恶、口英)、多氯联苯、多环芳香烃及化学武器等有毒有害物的处理技术已取得长足进展.这些有毒有害物的处理技术可概括为物理方法、化学方法、物理化学方法和生物降解法.本文从概念、应用场合、分解效率以及操作条件等方面对这些方法分别进行了介绍,重点介绍和评述了吸附和催化法,以及应用前景很好的生物降解技术.  相似文献   

3.
废水中硝基酚类化合物生物降解的研究进展   总被引:1,自引:0,他引:1  
硝基酚是一类重要且常用的化工原料,一些硝基酚毒性大且难以生物降解,被美国环保局列入“优先控制污染物名单”。在自然环境条件下,硝基酚的生物降解速率缓慢,导致硝基酚在环境中长期滞留和积累。分析了人工强化条件下废水中硝基酚的生物降解性能,主要从具有降解硝基酚能力的微生物、硝基酚的厌氧生物降解性、硝基酚的好氧生物降解性和硝基酚的共基质代谢降解方面进行了较全面的综述,讨论了该研究当前仍存在的一些问题和研究展望。  相似文献   

4.
红三叶草根际区石油降解菌的筛选及降解性能   总被引:1,自引:0,他引:1  
从石油污染的土壤红三叶草(nifoliumrepensLinn)根际修复区中分离筛选得到4株以原油作为惟一碳源和能源进行生长繁殖的高效石油降解菌。通过菌落形态、显微镜个体形态观察、生理生化鉴定以及菌株16SrDNA序列分析,初步鉴定4株优势降解菌分别为动性杆菌、藤黄微球菌、蜡状芽孢杆菌和短小芽孢杆菌。采用气相色谱/质谱(GC/MS)法分析4株混合菌对石油烃的降解性能。结果表明:在摇床培养条件下,混合菌54d对总石油烃的生物降解率达到90.50%,较对照高67.72%。随着生物降解时间的延长,石油组分中的正构烷烃、异构烷烃及环烷烃相对总量均呈减小趋势,而芳香烃和其他醇类、醛和酸类的相对含量则有所增加。  相似文献   

5.
脂肪酰基氨基酸对矿物润滑油生物降解性的影响研究   总被引:1,自引:1,他引:0  
通过生物降解试验研究了N-月桂酰基谷氨酸、N-月桂酰基甘氨酸、N-月桂酰基丙氨酸和N-油酰基甘氨酸4种脂肪酰基氨基酸对HVI 350矿物润滑油生物降解性的影响,采用高倍电子显微镜分析了生物降解过程中微生物数量和形态变化。结果表明,在矿物润滑油中添加少量脂肪酰基氨基酸后,矿物润滑油的生物降解性能明显改善,且生物降解过程中微生物数量增多、形态发生变化,这可能是脂肪酰基氨基酸增加了微生物的营养,且具有表面活性,有利于细胞的吸收,从而促进了矿物润滑油生物降解。  相似文献   

6.
通过生物降解试验研究了N-月桂酰基谷氨酸、N-月桂酰基甘氨酸、N-月桂酰基丙氨酸和N-油酰基甘氨酸4种脂肪酰基氨基酸对HVI350矿物润滑油生物降解性的影响,采用高倍电子显微镜分析了生物降解过程中微生物数量和形态变化。结果表明,在矿物润滑油中添加少量脂肪酰基氨基酸后,矿物润滑油的生物降解性能明显改善,且生物降解过程中微生物数量增多、形态发生变化,这可能是脂肪酰基氨基酸增加了微生物的营养,且具有表面活性,有利于细胞的吸收,从而促进了矿物润滑油生物降解。  相似文献   

7.
聚乙烯醇生物降解的研究进展   总被引:2,自引:0,他引:2  
聚乙烯醇由于具有良好的黏附性、浆膜强韧性、耐磨性等性能而被广泛应用于纺织、造纸等行业,但由于其不易生物降解的特性而带来了比较严重的环境问题。自1973年成功分离出第一株以聚乙烯醇为唯一碳源的降解菌以来,研究者们对聚乙烯醇的生物降解进行了广泛研究。在总结文献的基础上,重点介绍了聚乙烯醇的降解微生物、降解酶类、降解基因和生物降解环境,并提出聚乙烯醇生物降解将来可能的发展方向,以期为聚乙烯醇高效降解的研究和应用提供参考和借鉴。  相似文献   

8.
叙述了自80年代以来,高效液相色谱法在土壤,生物等样品分析中应用及取得的成绩,例如在分析多核芳香烃,硝基-多核芳香烃,多氯联苯,黄曲霉素等有机污染物方面。  相似文献   

9.
本文阐述了偶氮染料结构-生物降解性定性关系,生物降解机制,并对偶氮染料结构-生物降解性定量关系的有关参数进行了论述。  相似文献   

10.
二噁英是一类广泛分布于环境中的持久性有机污染物,它们能够在食物链中逐级积累,并可引发多种细胞毒性,严重影响生态系统和人类健康。在众多二噁英降解方法中,生物降解法以环境友好和低成本等优点一直受到国内外学者的青睐,而二噁英降解酶是生物降解法中的关键物质。简要综述了近年来二噁英典型降解酶的降解机制、效果和编码基因等方面研究进展,并对二噁英降解酶未来的研究和应用方向进行了展望。  相似文献   

11.
Goals, Scope and Background It has been observed that hydrocarbon treated wastewaters still contain high COD and a number of intermediates. This suggests that the required catabolic gene pool for further degradation might be absent in the system or, that its titer value is not significant enough. By providing the desired catabolic potential, the overall efficiency of the treatment system can be improved. This study aims to demonstrate this concept by bioaugmentation of a lab-scale reactor treating refinery wastewater with a consortium having the capacity to complement the alkB genotype to the available microbial population. Methods Two reactors were set up using activated biomass collected from a refinery treatment plant and operated at a continuous mode for a period of 8 weeks. The feed to both reactors was kept constant. Crude oil was spiked regularly. One reactor was bioaugmented with a consortium previously described for crude oil spill remediation. The efficiency of the bioaugmented reactor was demonstrated by reduced COD. The changes in the microbial population over a period of time were analyzed by RAPD. Catabolic activity of the biomass in both reactors was monitored by PCR. The presence of the catabolic loci was confirmed by Southern Hybridization. Results and Discussion 52.2% removal of COD was observed in the bioaugmented reactor while only 15.1% reduction of COD was observed in the reactor without bioaugmentation. The change in microbial population can be seen from the 4th week, which also corresponds to improved catabolic activity. The presence of the bedA locus was seen in all samples, which indicates the presence of aromatic degraders, but the appearance of the alkB locus, from the 6th week onwards, which was observed only in the samples from the bioaugmented reactor. The results suggest that the gene pool of the bioaugmented reactor has catabolic loci that can degrade accumulated intermediates, thus improving the efficiency of the system. Conclusions In this study, improvement of efficiency of bioremediation was demonstrated by addition of catabolic loci that are responsible for degradation. Bioaugmentation was carried out in biomass that was collected from an ETP (effluent treatment plant) treating hydrocarbon containing wastewater to study the strategies for improvement of the treatment system. Biostimulation, only marginally improved the efficiency, when compared to bioaugmentation. The improved efficiency was demonstrated by COD removal. The presence of the alkB locus suggests the importance of a catabolic gene pool that acts on accumulated intermediates. It is well documented that straight chain aliphatics and intermediates of aromatic compounds after ring cleavage, accumulate in refinery wastewater systems, thereby hindering further degradation of the wastewater. Supplementation of a catabolic gene pool that treats the lower pathway compounds and alkanes will improve the overall efficiency. In this study, results suggest that the alkB locus can also be used to monitor the degradative mode of the activated biomass. Recommendations and Perspective . Pollution from petroleum and petroleum products around the globe are known to have grave consequences on the environment. Bioremediation, using activated sludge, is one option for the treatment of such wastes. Effluent treatment plants are usually unable to completely degrade the wastewater being treated in the biological unit (the aerator chambers). The efficiency of degradation can be improved by biostimulation and bioaugmentation. This study demonstrates the improved efficiency of a treatment system for wastewater containing hydrocarbons by bioaugmentation of a consortium that supports degradation. Further experiments on a pilot scale are recommended to assess the use of bioaugmentation on a large scale. The use of molecular tools, like DNA probes for alkB, to monitor the system also needs to be explored.  相似文献   

12.
Nutrition and pollution stress stimulate genetic adaptation in microorganisms and assist in evolution of diverse metabolic pathways for their survival on several complex organic compounds. Persistent organic pollutants (POPs) are highly lipophilic in nature and cause adverse effects to the environment and human health by biomagnification through the food chain. Diverse microorganisms, harboring numerous plasmids and catabolic genes, acclimatize to these environmentally unfavorable conditions by gene duplication, mutational drift, hypermutation, and recombination. Genetic aspects of some major POP catabolic genes such as biphenyl dioxygenase (bph), DDT 2,3-dioxygenase, and angular dioxygenase assist in degradation of biphenyl, organochlorine pesticides, and dioxins/furans, respectively. Microbial metagenome constitutes the largest genetic reservoir with miscellaneous enzymatic activities implicated in degradation. To tap the metabolic potential of microorganisms, recent techniques like sequence and function-based screening and substrate-induced gene expression are proficient in tracing out novel catabolic genes from the entire metagenome for utilization in enhanced biodegradation. The major endeavor of today’s scientific world is to characterize the exact genetic mechanisms of microbes for bioremediation of these toxic compounds by excavating into the uncultured plethora. This review entails the effect of POPs on the environment and involvement of microbial catabolic genes for their removal with the advanced techniques of bioremediation.  相似文献   

13.
The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.  相似文献   

14.
硝基芳香化合物是环境中难降解的有机污染物之一 ,对环境的污染日益严重 ,利用生物技术对这类有机物进行降解是行之有效的新途径。针对几种单环硝基芳香化合物好氧降解的微生物、降解途径以及降解过程中的主要酶、降解性质粒、基因定位等分子遗传学的研究进展进行了综述  相似文献   

15.
Detection of dioxygenase genes present in various activated sludge   总被引:2,自引:0,他引:2  
GOAL, SCOPE AND BACKGROUND: Activated sludge from refineries contains various microorganisms that could utilize aromatics under aerobic conditions due to the oxygenase enzymes. Dioxygenase enzymes are oxygenases, which are involved in the ring cleavage step of aromatic hydrocarbons. In this study, the selected catabolic loci involved in ring cleavage have been monitored in the activated sludge samples at different time intervals. The investigation of the dioxygenase genes in the Effluent Treatment Plants (ETPs) and evaluation of their presence at different time points provides a clue for the aromatic utilizing potential of the inherent microbial flora. METHODS: The catabolic gene loci pheB, xylE, tod-isp, bed and nahG responsible for the enzymes catechol 1,2-dioxygenase, catechol 2,3-dioxygenase, toluene dioxygenase-iron-sulphur protein component, benzene dioxygenase and naphthalene dioxygenase were used respectively. The time dependent change in eubacterial population was demonstrated by the amplification of 16S rDNA product, followed by restriction digestion. The template DNA was obtained from the activated sludge collected from ETPs. The supporting physiological data for the overall performance of sludge was developed using respirometric analysis. The on-site COD and MLSS analysis for ETP was used in final evaluation. The study was carried out with samples collected from three different ETPs and also from a selected ETP at different time intervals. RESULTS AND DISCUSSION: The respirometric studies were carried out with phenol, catechol, toluene, and naphthalene to arrive at the target genotypes for further study by PCR protocol. The respirometric analysis coupled with the COD and MLSS analysis represented the physiological capacity of the various sludges. Initially, the tracking protocol was optimized by using different sludge samples, which were collected from refineries. The selected genotypes were amplified and their presence has been confirmed using Southern analysis. The gene loci tod-isp, bed and xylE were commonly observed at various time intervals of the sludge from the same source. The gene loci pheB and nahG were found to be relatively rare. CONCLUSION: The 16S rDNA PCR products after restriction digestion produced different DNA fingerprint patterns, suggesting that the microbial community composition was diverse in the three sources. Similarly, the presence of the catechol 2,3-dioxygenase, benzene dioxygenase and toluene dioxygenase genes confirmed the aromatic degrading potential in the various sludges. The probes could not pick the nahG and pheB genes. However, the respirometeric assay suggested that the oxidative capacity to use naphthalene as a substrate exists. RECOMMENDATION AND PERSPECTIVE: Our study of the diversity at various time points from the ETP provided an overview of the shifts of the catabolic composition of the sludge. This also depends on the influential parameters like the incoming pollutant level and the environmental conditions that are prevailing and often changing from time to time. The results of direct DNA extraction and PCR amplification do reflect the relative abundance of a particular catabolic genotype, which could be used to monitor the efficiency of treatment.  相似文献   

16.
In this study, the effect of ciprofloxacin (CIP) on the catabolic diversity of soil microbial communities was evaluated. Soil samples were spiked with ciprofloxacin (0, 1, 5 and 50 mg?kg?1) and were incubated for 1, 3, 9, 22 and 40 days. Untreated controls received only water. The functional diversity of the microbial community studied was characterized using a catabolic response profile (CRP). Six substrate groups were tested: carbohydrates, amino acids, carboxylic acids, aromatic chemicals, alcohols and polymers. After 40 days, the CIP concentrations in the soil samples ranged from 25% to 58% of the initial concentrations. Soil respiratory responses to the individual substrates D-glucose, lactose, D-mannose, L-glutamic, Na-citrate, malic acid and inosine were inhibited at the high CIP concentrations (5 and 50 mg·kg?1) in the soils and were increased at the lowest CIP concentration (1 mg·kg?1). Soil respiration was inhibited at all of the CIP concentrations after the addition of D-galactose and glycerol. The CIP concentration and incubation time explained 45.3% of the variance of the catabolic responses. The CRP analysis clearly discriminated among the different CIP concentrations. The results suggest that CIP strongly affects the catabolic diversities of soil microbial communities and that its effect is more significant than that of incubation time.  相似文献   

17.
生物强化技术及其在废水生物处理中的应用   总被引:3,自引:2,他引:3  
生物强化技术广泛应用于废水生物处理中,而竞争力和适应性强的高效菌株筛选是生物强化技术的决定性因素.论述了利用具有代谢性能的可移动基因片段强化、基因工程菌强化和常规微生物学手段分离菌株的生物强化技术,并阐述了生物强化技术在废水生物处理过程中去除难降解有机物,去除过量的氮、磷等营养物质,维持生物系统稳定性中的应用.  相似文献   

18.
Factors controlling change in biodegradation rate of the pesticide isoproturon with soil depth were investigated in a field with sandy-loam soil. Soil was sampled at five depths between 0-10 and 70-80 cm. Degradation rate declined progressively down the soil profile, with degradation slower, and relative differences in degradation rate between soil depths greater, in intact cores relative to sieved soil. Neither the maximum rate of degradation, or sorption, changed with soil depth, indicating that there was no variation in bioavailability. Differences in degradation rate between soil depths were not associated with the starting population size of catabolic organisms or the number of catabolic organisms proliferating following 100% degradation. Decreasing degradation rates with soil depth were associated with an increase in the length of the lag phase prior to exponential degradation, suggesting the time required for adaptation within communities controlled degradation rates. 16S rRNA PCR denaturing gradient gel electrophoresis showed that degradation in sub-soil between 40-50 and 70-80 cm depths was associated with proliferation of the same strains of Sphingomonas spp.  相似文献   

19.
Fenlon KA  Jones KC  Semple KT 《Chemosphere》2011,82(2):163-168
The rate of pesticide biodegradation does not remain constant with time, and is dependent on the physico-chemical properties of the soil and of the pesticide as well as on the biology of the soil. Prolonged or repeated contact between soil microbes and pesticides has been shown to result in an increase in the rate and extent of biodegradation. This work assessed the impact of the soil:water ratio on measurement of catabolic induction for 14C-isoproturon, 14C-diazinon and 14C-cypermethrin. Slurrying (1:1 and 1:3 soil:water) with agitation resulted in significantly higher rates and extents of mineralisation than the non-slurried system (P ? 0.05; 1:0 soil:water), except for the mineralisation of 14C-diazinon where the greatest extent of mineralisation occurred in non-slurried soil. Slurrying without agitation resulted in the significant lower mineralisation in all cases (P ? 0.05). There was a significant interaction between the soil:water ratio and length of contact (P ? 0.05). Whilst the use of slurried systems can enhance the extent and rate of mineralisation, there is no improvement in reproducibility, and so for the measurement of catabolic induction, the use of field conditions will lead to a more environmentally relevant measurement.  相似文献   

20.
The aim of this study was to characterize the behaviour of a PAH-degrading bacterium to determine whether mineralization plateaus as a result of substrate removal, a decrease in microbial activity or nutrient availability in sterile soils over time. To investigate this, the mineralization of 14C-phenanthrene was measured until it plateaued; subsequently, additional 14C-phenanthrene, catabolic inocula or nutrients were introduced and mineralization was measured for a further 10 d. Cell numbers were also measured together with 14C-uptake into microbial biomass. Freshly added 14C-phenanthrene was rapidly metabolised by the microorganisms. Neither the addition of a catabolic inoculum nor nutrients affected the extent of 14C-phenanthrene mineralization. Cell numbers remained constant over time, with only a small amount of the 14C-activity incorporated into the microbial biomass. This study indicated that the termination of mineralization was due to the removal of available phenanthrene and not decreasing cellular activity or cell death. The mineralization values also correlated with 14C-phenanthrene extractability using beta-cyclodextrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号