首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT: As part of the National Assessment of Climate Change, the implications of future climate predictions derived from four global climate models (GCMs) were used to evaluate possible future changes to Pacific Northwest climate, the surface water response of the Columbia River basin, and the ability of the Columbia River reservoir system to meet regional water resources objectives. Two representative GCM simulations from the Hadley Centre (HC) and Max Planck Institute (MPI) were selected from a group of GCM simulations made available via the National Assessment for climate change. From these simulations, quasi-stationary, decadal mean temperature and precipitation changes were used to perturb historical records of precipitation and temperature data to create inferred conditions for 2025, 2045, and 2095. These perturbed records, which represent future climate in the experiments, were used to drive a macro-scale hydrology model of the Columbia River at 1/8 degree resolution. The altered streamflows simulated for each scenario were, in turn, used to drive a reservoir model, from which the ability of the system to meet water resources objectives was determined relative to a simulated hydrologic base case (current climate). Although the two GCM simulations showed somewhat different seasonal patterns for temperature change, in general the simulations show reasonably consistent basin average increases in temperature of about 1.8–2.1°C for 2025, and about 2.3–2.9°C for 2045. The HC simulations predict an annual average temperature increase of about 4.5°C for 2095. Changes in basin averaged winter precipitation range from -1 percent to + 20 percent for the HC and MPI scenarios, and summer precipitation is also variously affected. These changes in climate result in significant increases in winter runoff volumes due to increased winter precipitation and warmer winter temperatures, with resulting reductions in snowpack. Average March 1 basin average snow water equivalents are 75 to 85 percent of the base case for 2025, and 55 to 65 percent of the base case by 2045. By 2045 the reduced snowpack and earlier snow melt, coupled with higher evapotranspiration in early summer, would lead to earlier spring peak flows and reduced runoff volumes from April-September ranging from about 75 percent to 90 percent of the base case. Annual runoff volumes range from 85 percent to 110 percent of the base case in the simulations for 2045. These changes in streamflow create increased competition for water during the spring, summer, and early fall between non-firm energy production, irrigation, instream flow, and recreation. Flood control effectiveness is moderately reduced for most of the scenarios examined, and desirable navigation conditions on the Snake are generally enhanced or unchanged. Current levels of winter-dominated firm energy production are only significantly impacted for the MPI 2045 simulations.  相似文献   

2.
ABSTRACT: The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.  相似文献   

3.
ABSTRACT: Downscaling coarse resolution climate data to scales that are useful for impact assessment studies is receiving increased attention. Basin-scale hydrologic processes and other local climate impacts related to water resources such as reservoir management, crop and forest productivity, and ecosystem response require climate information at scales that are much finer than current and future GCM resolutions. The Regional Climate System Model (RCSM) is a dynamic downscaling system that has been used since 1994 for short-term precipitation and streamflow predictions and seasonal hindcast analysis with good skill. During the 1997–1998 winter, experimental seasonal forecasts were made in collaboration with the NOAA Climate Prediction Center and UCLA with promising results. Preliminary studies of a control and 2°CO2 perturbation for the southwestern U.S. have been performed.  相似文献   

4.
ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow‐producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century.  相似文献   

5.
ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamflow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small.  相似文献   

6.
Jin, Xin and Venkataramana Sridhar, 2012. Impacts of Climate Change on Hydrology and Water Resources in the Boise and Spokane River Basins. Journal of the American Water Resources Association (JAWRA) 48(2): 197‐220. DOI: 10.1111/j.1752‐1688.2011.00605.x Abstract: In the Pacific Northwest, warming climate has resulted in a lengthened growing season, declining snowpack, and earlier timing of spring runoff. This study characterizes the impact of climate change in two basins in Idaho, the Spokane River and the Boise River basins. We simulated the basin‐scale hydrology by coupling the downscaled precipitation and temperature outputs from a suite of global climate models and the Soil and Water Assessment Tool (SWAT), between 2010 and 2060 and assess the impacts of climate change on water resources in the region. For the Boise River basin, changes in precipitation ranged from ?3.8 to 36%. Changes in temperature were expected to be between 0.02 and 3.9°C. In the Spokane River region, changes in precipitation were expected to be between ?6.7 and 17.9%. Changes in temperature appeared between 0.1 and 3.5°C over a period of the next five decades between 2010 and 2060. Without bias‐correcting the simulated streamflow, in the Boise River basin, change in peak flows (March through June) was projected to range from ?58 to +106 m3/s and, for the Spokane River basin, the range was expected to be from ?198 to +88 m3/s. Both the basins exhibited substantial variability in precipitation, evapotranspiration, and recharge estimates, and this knowledge of possible hydrologic impacts at the watershed scale can help the stakeholders with possible options in their decision‐making process.  相似文献   

7.
Abstract: Using the latest available General Circulation Model (GCM) results we present an assessment of climate change impacts on California hydrology and water resources. The approach considers the output of two GCMs, the PCM and the HadCM3, run under two different greenhouse gas (GHG) emission scenarios: the high emission A1fi and the low emission B1. The GCM output was statistically downscaled and used in the Variable Infiltration Capacity (VIC) macroscale distributed hydrologic model to derive inflows to major reservoirs in the California Central Valley. Historical inflows used as inputs to the water resources model CalSim II were modified to represent the climate change perturbed conditions for water supply deliveries, reliability, reservoir storage and changes to variables of environmental concern. Our results show greater negative impacts to California hydrology and water resources than previous assessments of climate change impacts in the region. These impacts, which translate into smaller streamflows, lower reservoir storage and decreased water supply deliveries and reliability, will be especially pronounced later in the 21st Century and south of the San Francisco bay Delta. The importance of considering how climate change impacts vary for different temporal, spatial, and institutional conditions in addition to the average impacts is also demonstrated.  相似文献   

8.
Since the 1970s, the sediment flux of the Yellow River to the sea has shown a marked tendency to decrease, which is unfavorable for wetland protection and oil extraction in the Yellow River delta. Thus, an effort has been made to elucidate the relation between the sediment flux to the sea and the drainage basin factors including climate and human activities. The results show that the sediment flux to the sea responds to the changed precipitation in different ways for different runoff and sediment source areas in the drainage basin. If other factors are assumed to be constant, when the annual precipitation in the area between Longmen and Sanmenxia decreases by 10 mm, the sediment flux to the sea will decrease by 27.5 million t/yr; when the precipitation in the area between Hekouzhen and Longmen decreases by 10 mm, the sediment flux to the sea will decrease by 14.3 million t/yr; when the precipitation in the area above Lanzhou decreases by 10 mm, the sediment flux to the sea will decrease by 17.4 million t/yr. A multiple regression equation has been established between the sediment flux to the sea and the influencing factors, such as the area of land terracing and tree and grass planting, the area of the land created by the sediment trapped by check dams, the annual precipitation, and the annual quantity of water diversion by man. The equation may be used to estimate the change in the sediment flux to the sea when the influencing variables are further changed, to provide useful knowledge for the environmental planning of the Yellow River drainage basin and its delta.  相似文献   

9.
The southern interior ecoprovince (SIE) of British Columbia, Canada represents the northernmost extent of the great western North American deserts, it is experiencing some of the nation's fastest economic and population growth making it one of Canada's most water‐stressed regions, and it includes two headwater basins of the transboundary (Canada‐US) Columbia River. Statistical trend analyses were performed on 90‐year regional indicator time series for annual conditions in observed temperature, precipitation, and streamflow reflecting the three major SIE river basins: the Thompson, and transboundary Okanagan and Similkameen. Results suggest that regional climate has grown warmer and wetter, but with little net impact on total water supply availability. The outcome might reflect mutual cancellation of increases in precipitation inputs vs. evapotranspiration losses. Conclusions appeared largely insensitive to low‐pass data filtering, Pacific Decadal Oscillation effects, or solar output variability. Ensemble historical global climate model runs over the same time interval support this absence of appreciable trend in regionally integrated annual runoff volume, but a possible mismatch in precipitation results suggests a direction for further study. Overall, while important changes in hydrologic timing and extremes are likely occurring here, there is limited evidence for a net change in overall water supply availability over the last century.  相似文献   

10.
ABSTRACT: The St. Johns River Water Management District (SJR-WMD) is using a Geographic Information System (GIS) screening model to estimate annual nonpoint source pollution loads to surface waters and determine nonpoint source pollution problem areas within the SJRWMD. The model is a significant improvement over current practice because it is contained entirely within the district's GIS software, resulting in greater flexibility and efficiency, and useful visualization capabilities. Model inputs consist of five spatial data layers, runoff coefficients, mean runoff concentrations, and stormwater treatment efficiencies. The spatial data layers are: existing land use, future land use, soils, rainfall, and hydrologic boundaries. These data layers are processed using the analytical capabilities of a cell-based GIS. Model output consists of seven spatial data layers: runoff, total nitrogen, total phosphorous, suspended solids, biochemical oxygen demand, lead, and zinc. Model output can be examined visually or summarized numerically by drainage basin. Results are reported for only one of the SJRWMD's ten major drainage basins, the lower St. Johns River basin. The model was created to serve a major planning effort at the SJRWMD; results are being actively used to address nonpoint source pollution problems.  相似文献   

11.
Data-driven techniques are used extensively for hydrologic time-series prediction. We created various data-driven models (DDMs) based on machine learning: long short-term memory (LSTM), support vector regression (SVR), extreme learning machines, and an artificial neural network with backpropagation, to define the optimal approach to predicting streamflow time series in the Carson River (California, USA) and Montmorency (Canada) catchments. The moderate resolution imaging spectroradiometer (MODIS) snow-coverage dataset was applied to improve the streamflow estimate. In addition to the DDMs, the conceptual snowmelt runoff model was applied to simulate and forecast daily streamflow. The four main predictor variables, namely snow-coverage (S-C), precipitation (P), maximum temperature (Tmax), and minimum temperature (Tmin), and their corresponding values for each river basin, were obtained from National Climatic Data Center and National Snow and Ice Data Center to develop the model. The most relevant predictor variable was chosen using the support vector machine-recursive feature elimination feature selection approach. The results show that incorporating the MODIS snow-coverage dataset improves the models' prediction accuracies in the snowmelt-dominated basin. SVR and LSTM exhibited the best performances (root mean square error = 8.63 and 9.80) using monthly and daily snowmelt time series, respectively. In summary, machine learning is a reliable method to forecast runoff as it can be employed in global climate forecasts that require high-volume data processing.  相似文献   

12.
ABSTRACT: A climate change impacts assessment for water resources in the San Joaquin River region of California is presented. Regional climate projections are based on a 1 percent per year CO2 increase relative to late 20th Century CO2 conditions. Two global projections of this CO2 increase scenario are considered (HadCM2 and PCM) during two future periods (2010 to 2039 and 2050 to 2079). HadCM2 projects faster warming than PCM. HadCM2 and PCM project wetter and drier conditions, respectively, relative to present climate. In the HadCM2 case, there would be increased reservoir inflows, increased storage limited by existing capacity, and increased releases for deliveries and river flows. In the PCM case, there would be decreased reservoir inflows, decreased storage and releases, and decreased deliveries. Impacts under either projection case cannot be regarded as more likely than the other. Most of the impacts uncertainty is attributable to the divergence in the precipitation projections. The range of assessed impacts is too broad to guide selection of mitigation projects. Regional planning agencies can respond by developing contingency strategies for these cases and applying the methodology herein to evaluate a broader set of CO2 scenarios, land use projections, and operational assumptions. Improved agency access to climate projection information is necessary to support this effort.  相似文献   

13.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   

14.
ABSTRACT: The Great Plains of the United States, drained primanly by the Missouri River, are very sensitive to shifts in climate. The six main stem dams on the Missouri River control more than one‐half of the nearly 1.5 million square kilometer basin and can store three times the annual inflow from upstream. The dams are operated by the U.S. Army Corps of Engineers using a Master Manual that describes system priorities and benefits. The complex operational rules were incorporated into the Soil and Water Assessment Tool computer model (SWAT). SWAT is a distributed parameter rainfall‐runoff model capable of simulating the transpiration suppression effects of CO2 enrichment. The new reservoir algorithms were calibrated using a 25‐year long historic record of basin climate and discharge records. Results demonstrate that it is possible to incorporate the operation of a highly regulated river system into a complex rainfall‐runoff model. The algorithms were then tested using extreme climate scenarios indicative of a prolonged drought, a short drought, and a ten percent increase in basin‐wide precipitation. It is apparent that the rules for operating the reservoirs will likely require modification if, for example, upper‐basin precipitation were to increase only ten percent under changed climate conditions.  相似文献   

15.
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis.  相似文献   

16.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   

17.
ABSTRACT: The potential impacts of climate change on water yield are examined in the Upper Wind River Basin. This is a high‐elevation, mountain basin with a snowfall/snowmelt dominated stream‐flow hydrograph. A variety of physiographic conditions are represented in the rangeland, coniferous forests, and high‐elevation alpine regions. The Soil Water Assessment Tool (SWAT) is used to model the baseline input time series data and climate change scenarios. Five hydroclimatic variables (temperature, precipitation, CO2, radiation, and humidity) are examined using sensitivity tests of individual and coupled variables with a constant change and coupled variables with a monthly change. Results indicate that the most influential variable on annual water yield is precipitation; and, the most influential variable on the timing of streamflow is temperature. Carbon dioxide, radiation, and humidity each noticeably impact water yield, but less significantly. The coupled variable analyses represent a more realistic climate change regime and reflect the combined response of the basin to each variable; for example, increased temperature offsets the effects of increased precipitation and magnifies the effects of decreased precipitation. This paper shows that the hydrologic response to climate change depends largely on the hydroclimatic variables examined and that each variable has a unique effect (e.g., magnitude, timing) on water yield.  相似文献   

18.
ABSTRACT: The feasibility of simulating monthly runoff for southeast Michigan, which comprises four major river basins, was evaluated with the Streamflow Synthesis and Reservoir Regulation watershed model. The evaluation covered a 13-year period (1961–73), which encompassed a complete runoff cycle. Results indicate it is feasible to simulate monthly runoff volumes on a regional scale with a single equivalent watershed by using daily precipitation and temperature data. Simulation of regional flows appears particularly attractive for the Great Lakes basin, since the basin consists of many relatively small watersheds. This method also appears promising for development of monthly runoff forecasts by employing average monthly meteorological data distributed on a daily basis. Tests of six-month runoff forecasts show relatively small deterioration with time and offer considerable improvement over climatology.  相似文献   

19.
Kim, Ungtae and Jagath J. Kaluarachchi, 2009. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association (JAWRA) 45(6):1361‐1378. Abstract: Climate change affects water resources availability of international river basins that are vulnerable to runoff variability of upstream countries especially with increasing water demands. The upper Blue Nile River Basin is a good example because its downstream countries, Sudan and Egypt, depend solely on Nile waters for their economic development. In this study, the impacts of climate change on both hydrology and water resources operations were analyzed using the outcomes of six different general circulation models (GCMs) for the 2050s. The outcomes of these six GCMs were weighted to provide average future changes. Hydrologic sensitivity, flow statistics, a drought index, and water resources assessment indices (reliability, resiliency, and vulnerability) were used as quantitative indicators. The changes in outflows from the two proposed dams (Karadobi and Border) to downstream countries were also assessed. Given the uncertainty of different GCMs, the simulation results of the weighted scenario suggested mild increases in hydrologic variables (precipitation, temperature, potential evapotranspiration, and runoff) across the study area. The weighted scenario also showed that low‐flow statistics and the reliability of streamflows are increased and severe drought events are decreased mainly due to increased precipitation. Joint dam operation performed better than single dam operation in terms of both hydropower generation and mean annual storage without affecting the runoff volume to downstream countries, but enhancing flow characteristics and the robustness of streamflows. This study provides useful information to decision makers for the planning and management of future water resources of the study area and downstream countries.  相似文献   

20.
ABSTRACT: The effects of potential climate change on water resources in the Delaware River basin were determined. The study focused on two important water-resource components in the basin: (1) storage in the reservoirs that supply New York City, and (2) the position of the salt front in the Delaware River estuary. Current reservoir operating procedures provide for releases from the New York City reservoirs to maintain the position of the salt front in the estuary downstream from freshwater intakes and ground-water recharge zones in the Philadelphia metropolitan area. A hydrologic model of the basin was developed to simulate changes in New York City reservoir storage and the position of the salt front in the Delaware River estuary given changes in temperature and precipitation. Results of simulations indicated that storage depletion in the New York City reservoirs is a more likely effect of changes in temperature and precipitation than is the upstream movement of the salt front in the Delaware River estuary. In contrast, the results indicated that a rise in sea level would have a greater effect on movement of the salt front than on storage in the New York City reservoirs. The model simulations also projected that, by decreasing current mandated reservoir releases, a balance can be reached wherein the negative effects of climate change on storage in the New York City reservoirs and the position of the salt front in the Delaware River estuary are minimized. Finally, the results indicated that natural variability in climate is of such magnitude that its effects on water resources could overwhelm the effects of long-term trends in precipitation and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号