首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为获得真实可靠的现场实测煤层瓦斯压力,实现煤层突出灾害等级科学评价和精准防治,通过理论分析、数值模拟和现场验证相结合的方法,以双重孔隙介质为基础,根据煤层瓦斯流动模型和瓦斯压力恢复曲线,分析煤层瓦斯压力测定的时空分布及准确性,并以桃园煤矿Ⅱ1采区10煤层为例,开展工程验证。研究结果表明:当基质瓦斯压力与裂隙瓦斯压力处于动态平衡时,所测得的煤层瓦斯压力最为准确;所构建的用于COMSOL解算的煤层测压瓦斯流动方程,可实现瓦斯压力时空分布的准确模拟;当煤层实测瓦斯压力恢复曲线与模拟分布特征一致且处于工程预测值范围内,可以判定结果为真实值;现场工程验证了实测瓦斯压力恢复曲线与模拟结果一致,测压结果准确。  相似文献   

2.
为了采取合理的瓦斯抽采技术,实现矿井安全高效开采,对朱集矿13-1煤瓦斯基本参数进行了现场和实验室测定,得出了瓦斯含量、瓦斯压力、放散初速度,透气性系数、坚固性系数等参数,并对测定结果进行了理论分析,得出了这些参数的基本规律.结果表明:随着开采深度的增加,在一定深度范围内,其瓦斯压力、瓦斯含量呈线性增长,瓦斯压力与瓦斯含量都比较大;煤层钻孔瓦斯衰减系数较大,该煤层的透气性系数较小,D、K值小于其临界值,可判断出该煤层为难抽煤层且有突出危险性.  相似文献   

3.
为研究煤层赋存条件对煤与瓦斯突出危险性的影响,模拟分析不同条件(埋藏深度、煤层厚度和煤体强度)下的应力、瓦斯压力和煤体塑性变形区的分布及变化。结果表明,随埋藏深度的增加,工作面前方应力峰值及应力梯度、瓦斯压力梯度、塑性变形区及塑性应变量等随之增大,煤与瓦斯突出的危险性越来越高;随煤层厚度的增加,工作面应力峰值、应力梯度逐渐减小,出现应力峰值的位置越远离工作面,瓦斯卸压带、瓦斯排放带、塑性变形区越逐渐增大,煤与瓦斯突出的危险性越来越小;随煤体强度的升高,工作面前方应力梯度、瓦斯压力梯度随之增大,塑性变形区和塑性应变值随之减小,煤与瓦斯突出危险性越来越小。  相似文献   

4.
针对时间因素对钻屑瓦斯解吸指标K1测定结果的影响,采用恒温瓦斯放散试验深入分析钻屑瓦斯解吸指标K1测定理论的准确性,总结因时间因素导致K1值测定误差所带来的现场问题。研究结果表明:K1值的测定误差与时间关系密切,测定启动时间越晚,误差越大;测定启动时间由第1 min延后至第2 min,绝对误差和相对误差最大值分别增加0.081 cm3/(g·min1/2)和2.20%;高瓦斯压力条件矿井或煤层的局部高瓦斯压力区域、构造煤发育区的钻屑瓦斯解吸指标K1值测定结果偏低,测定误差偏大。研究结果可为煤与瓦斯突出预测水平的提升提供技术支撑。  相似文献   

5.
为了解决复杂环境下立井揭煤前煤层瓦斯压力的可靠测定,基于揭煤井筒瓦斯地质特征、煤岩体物理力学性质,应用COMSOL软件模拟揭煤工作面在接近目标煤层时,井筒周围煤岩的地应力分布特征,直观展现了目标煤层中的应力分布结果。模拟结果表明,立井工作面距煤层的垂直距离为7 m时,煤层中会形成一个近似于环形的卸压圈,卸压半径为16 m,因此煤层瓦斯压力测试孔的终孔位置应布置在井筒中心线16 m以外的原始地应力区,以保证测压点瓦斯压力不受揭煤井筒卸压区的影响,令测压结果准确可靠,从而更好地预测煤与瓦斯突出区域的危险性。同时,结合立井揭煤工作面的水文地质特征和井筒严重淋水情况,自主研发并应用了瓦斯测压孔"两堵一注"封孔材料及特定的封孔工艺,进一步保障了封孔质量和瓦斯压力测试结果的可靠性。最后,依据测压结束时测压管内的实际水压情况,对测压结果进行修正,并依据实测瓦斯含量,采用间接法对所测得的瓦斯压力进行验证,实测值在反算得到的瓦斯压力值域内,表明此方法有效可行。  相似文献   

6.
煤层瓦斯流动数值解算时空步长的选取   总被引:6,自引:0,他引:6  
对应用有限差分法解算煤层瓦斯流动时,如何选取合适的时间步长和空间步长、如何根据煤层瓦斯压力分布计算煤壁瓦斯涌出量等问题进行了分析和探讨。用煤壁处节点与煤层内相邻节点间的瓦斯压力梯度来求煤壁瓦斯涌出量的方法误差较大。根据煤层内各节点的瓦斯压力值对瓦斯压力进行拟合,用拟合曲线在煤壁处的斜率作为煤壁瓦斯压力梯度计算瓦斯涌出量,能得到可靠精确的结果。通过考察选取不同时间步长和空间步长时煤壁瓦斯压力梯度的变化,提出了选取合适的时间步长和空间步长的方法。  相似文献   

7.
在煤层瓦斯抽采工艺中,抽采钻孔周围煤层瓦斯压力分布状况决定了最佳抽采时间和抽采半径。为研究抽采钻孔周围煤层瓦斯压力分布情况,通过理论分析和数值模拟,构建抽采钻孔周围煤层瓦斯流量表达式;应用达西渗流定律,推导出抽采钻孔周围煤层瓦斯压力解析表达式;采用瓦斯抽采半径随抽采时间的变化速率作为确定瓦斯抽采最佳时间的依据,给出临界值,并进行工程应用。结果表明:随着测定点与钻孔中心距离的增加,煤层瓦斯压力逐步上升,最终趋于原始值;随着抽采时间延长,瓦斯压力大致呈指数规律下降;瓦斯抽采半径随抽采时间的变化速率临界值可暂定为0.47。  相似文献   

8.
基于斌郎煤矿401采区瓦斯地质情况,参照相关规范计算并预测了采区瓦斯储量和瓦斯涌出量,预测值分别为15.08 Mm3和7.84 m3/min,以此为依据初步分析确定了该采区抽采瓦斯的必要性与可行性。为进一步掌握煤层预抽瓦斯的可行性,在401采区北端沿内连煤层掘进1条长度为309 m的瓦斯专用巷道。通过在±0西北大巷实施穿层钻孔和在采区内连煤层掘煤巷道实施顺层钻孔2种钻采方式,进行了采区瓦斯预抽试验。试验共实施了6个穿层孔和6个顺层孔,临孔间距分别为6 m和5 m,测得12个孔的平均单孔瓦斯流量和平均瓦斯体积分数分别为0.091 m3/min和47%,获得了较好的瓦斯预抽效果。综合分析采区瓦斯主要参数的预测结果和瓦斯预抽试验数据,提出了"以首先开采外连煤层并同时抽采内连煤层的卸压瓦斯为主,必要时预先抽采煤层瓦斯和围岩裂隙中瓦斯"的采区瓦斯治理方案和将U型通风变更为Y型通风的建议。参考相似矿井的瓦斯利用经验对瓦斯发电的投入及产出进行了预算和评估,将发电机功率初步确定为500 kW。  相似文献   

9.
为了降低平煤十矿己15-16-24130工作面运输巷掘进中的突出危险性,基于实际工程背景,考虑瓦斯抽采中的瓦斯运移及煤岩变形等因素,建立了瓦斯抽采气固耦合模型,并利用COMSOL Multiphysics软件对平煤十矿己15-16煤层的底板巷穿层钻孔瓦斯抽采方案进行数值模拟,研究了瓦斯抽采对于降低掘进过程中突出危险性的影响。研究结果表明:在己18煤层开挖底板巷对己15-16煤层进行穿层钻孔瓦斯抽采,瓦斯抽采180 d后,己15-16-24130工作面运输巷附近煤层残余瓦斯压力及瓦斯含量分别降至0.315 MPa和3.84 m3/t;将底板巷穿层钻孔瓦斯抽采方案进行工程应用,实测抽采后的残余瓦斯压力及瓦斯含量在0.32 MPa和3.17 m3/t,均小于平煤十矿煤与瓦斯突出防治规定的“双6”指标(残余瓦斯压力小于0.6 MPa,残余瓦斯含量小于6 m3/t),可有效降低运输巷掘进过程中的突出危险性。  相似文献   

10.
田小举  李新海 《安全》2013,(7):21-23
本文针对鸿岭煤业二1煤层赋存情况,通过测定其煤层瓦斯压力、瓦斯含量、煤的坚固性系数、瓦斯放散初速度以及煤的破坏类型,并与突出危险性指标进行对比,得出该煤层测点的单项指标未超过规定的危险值,发生煤与瓦斯突出的危险性较小。  相似文献   

11.
淮北矿业集团公司朱仙庄矿位于安徽省淮北平原中部,属宿东煤田,是国有重点煤矿,年产能180万t。蕴藏的煤炭为良好的炼焦配煤,主要供应国内钢铁工业及其它工业用户。朱仙庄煤矿为煤与瓦斯突出矿井,矿井绝对瓦斯涌出量为40.32m^3/min,相对瓦斯涌出量10.47m^3/t,矿井可采煤层有7、8、10号煤层,主采煤层为8号煤层。8号煤层一水平各工作面瓦斯压力在0.3~1.7MPa,瓦斯含量在4~8m^3/t。二水平瓦斯压力达2.7~6.1MPa,瓦斯含量为10.54~15.07m^3/t。既有高瓦斯危害,又有煤与瓦斯突出危险。  相似文献   

12.
通过分析温度和地应力对深部煤体瓦斯运移规律的影响,建立了瓦斯渗流热流固耦合模型,以贵州省松和煤矿15#煤层12150采煤工作面为例,利用ComsolMultiphysics软件对深部煤层工作面前方瓦斯渗流进行数值模拟。研究结果表明:受采动影响,在工作面前方“三带”中,卸压区存在大量新裂隙和通道,瓦斯压力梯度最大;在应力集中区至卸压区过渡段瓦斯压力下降速度最快,解释了在该区容易导致瓦斯突出的原因;在应力集中区,瓦斯压力和有效应力较高,压缩煤体,导致煤颗粒排列紧密,渗透率降低;在卸压区,煤体体积形变逐渐变大,产生了很多新裂隙,发生扩容,渗流通道贯通,导致渗透率急剧增加,因此在应力最大处形成了煤层渗透率最低点,随着时间的推移,渗透率最低点逐步远离工作面;在采煤工作面前方,虽然温度升高后瓦斯热运动加剧,有促进瓦斯渗透率的趋势,但由于工作面前方有效应力较大,煤体受热膨胀应力小于有效应力,导致煤体内膨胀,渗流空间减小,造成渗透率降低。  相似文献   

13.
针对新建矿井地勘瓦斯含量测值偏低和井下实测瓦斯含量较少的特点,结合工程和科研实践,提出了利用大量的工作面瓦斯涌出量反演煤层原始瓦斯含量技术和基于探采对比的煤层瓦斯含量预测方法。以邹庄井田32煤层为研究对象,在考虑瓦斯抽采情况下计算3204工作面瓦斯涌出量,并反演该工作面煤层原始瓦斯含量。通过对比采掘过程中获得的瓦斯含量和地勘瓦斯含量,得到不同钻孔深度时的地勘瓦斯含量修正系数,并采用瓦斯地质研究方法对32煤层分3个单元进行瓦斯含量预测。结果表明:32煤层瓦斯含量整体呈现"东部大于西部,北部大于南部"的规律,与临近矿井具有相似的瓦斯赋存规律。这表明利用探采对比的方法预测煤层瓦斯含量是可靠的。  相似文献   

14.
为了提高瓦斯抽采效果,以西沟煤矿5315工作面注气瓦斯抽采方案为工程背景,开展注CO2促抽煤层瓦斯模拟研究。通过对注CO2驱替煤层瓦斯机理研究,结合注气瓦斯抽采过程中的气体运移场和煤体变形场的耦合关系,建立了注CO2促抽瓦斯固气耦合模型;利用COMSOL Multiphysics软件模拟了工作面注气瓦斯抽采,对比分析了注气瓦斯抽采与本煤层顺层钻孔抽采的瓦斯抽采效果,论证了煤层注CO2促抽煤层瓦斯工艺的可行性与有效性。研究结果表明:在工作面瓦斯抽采90 d后注入CO2,对瓦斯抽采的促抽效果明显,煤层瓦斯压力降至0.46~0.49 MPa,瓦斯含量降低至4.22 m3/t;在90 d后注入CO2促抽煤层瓦斯,在瓦斯抽采至第180 d时,抽采效果较钻孔瓦斯抽采明显提高,煤层瓦斯压力降低了7.84%~9.26%,残余瓦斯含量减少了18.63%。通过工程实测可知,5315工作面在注入CO2促抽煤层瓦斯抽采后的瓦斯压力与瓦斯含量分别降低至0.48 MPa和4.76 m3/t,有效降低了煤与瓦斯突出的危险性。  相似文献   

15.
煤与瓦斯共采技术是煤矿绿色开采技术的重要组成部分之一.针对矿井煤层薄、煤层透气性低、煤层瓦斯含量低等特点,应用岩层移动理论和采空区瓦斯流动规律,研究了采场内卸压瓦斯的运移路径和富集区域,建立了矿井煤与瓦斯共采系统,采用了高位顶板穿层钻孔瓦斯抽采方法和老采空区瓦斯抽采方法等综合瓦斯抽采方法,降低了矿井瓦斯涌出量,消除了工作面瓦斯积聚现象,提高了矿井瓦斯抽采率和抽采浓度.在保障煤炭资源安全开采的前提下实现了瓦斯资源的安全、高效抽采.  相似文献   

16.
河南省郑州煤炭工业(集团)有限责任公司(以下简称“郑煤集团”)所采煤层为豫西“三软”不稳定煤层。“三软”得名于其煤软、顶板软、底板软。“三软”煤层的煤呈粉末状,煤层硬度系数小于0.2,属极软煤层。煤层顶板为泥岩、炭质泥岩、页岩,松软易碎;煤层底板为泥岩、炭质泥岩,遇水膨胀;受滑动构造影响,煤层为全层构造煤(糜棱煤),煤层致密,透气性极差。国家发展改革委员会制定的瓦斯抽采利用方案,曾将郑煤矿区所属三大煤田(荥巩、登封、新密)列为我国34个单一煤层严重突出矿区之首,称其为“国内煤与瓦斯突出最危险的矿区”。  相似文献   

17.
煤层瓦斯压力测定是煤矿安全生产基础参数测定的重要内容之一,测压成功的关键是封孔技术。当围岩裂隙较发育时需要采用压力注浆封孔,注浆压力就成为封孔的技术关键。为了确定一定围岩岩性条件下的合理封孔注浆压力,采用数值模拟的方法对测压钻孔塑性区大小进行了仿真模拟,并根据浆液渗流规律和钻孔围岩性质之间的关系建立了浆液流动数学模型,得出了合理的注浆压力为4MPa,结合新型“两堵一注”囊袋式封孔装置与CPD8M型煤层瓦斯压力自动测定仪进行了现场应用,结果表明4MPa的注浆压力满足平煤十三矿试验现场围岩条件下的封孔要求,对同类条件下瓦斯压力测定具有一定的指导意义。  相似文献   

18.
瓦斯压力是煤层瓦斯的重要基础参数,为了掌握煤层瓦斯压力,基于煤层瓦斯连续方程进行了瓦斯压力与煤层倾斜长度解析模型的推演,针对推演出的模型结合数值拟合方法建立了一种解析-数值耦合的瓦斯压力预判方法。为便于比较该方法与一般数值拟合的差异,选择了浅埋煤层及深部煤层两个差异化样本。不同样本下,一般数值拟合方法与耦合方法预判结果显示:样本Ⅰ中不同预判方法的相关性系数均在0.9874之上,样本Ⅱ中不同的预判模型相关性系数差异较大,耦合模型相关性系数最大为0.7786;样本Ⅰ中标准差数值及不同方法间差异均较小,样本Ⅱ中标差差异较明显;一般预判方法瓦斯压力增长梯度随倾斜长度的增加逐渐变大与实际不符,耦合方法瓦斯压力随倾斜长度增长趋于稳定与实际情况一致;不同预判模型下瓦斯压力生长曲线不因样本差异而有较大的波动。综合不同样本瓦斯压力预判结果可知,浅埋煤层瓦斯压力预判可应用线性回归方法,深部煤层瓦斯压力预判应用耦合方法与实际更相符。  相似文献   

19.
为了解决近距离高瓦斯突出煤层首采工作面煤与瓦斯突出的问题,在对目前松河矿井首采工作面煤层及瓦斯赋存分析的基础上,确定对首采工作面采用穿层钻孔预抽煤巷条带煤层瓦斯的区域防突措施,并采用残余瓦斯压力法和钻屑指标法分别对预抽效果进行了检验和验证,结果表明预抽效果检验消突率为100%,区域验证消突率在98.7%以上,区域防突技术应用效果较好,保证了松河矿井首采工作面的安全快速的掘进和矿井的提前达产。  相似文献   

20.
为了对回采工作面瓦斯涌出量进行预测,提出将支持向量机(SVM)与遗传算法(GA)相耦合。利用GA寻找SVM最优的惩罚参数c和核函数参数g,并结合SVM训练速度快且具有良好泛化性能的特点,建立了基于SVM耦合遗传算法的回采工作面瓦斯涌出量预测模型。煤层深度、煤层厚度、煤层倾角、开采层原始瓦斯量、煤层间距、采高、临近层瓦斯含量、临近层厚度、层间岩性、工作面长度、推进速度、采出率、日产量对瓦斯涌出量的影响是复杂的、非线性的,因而将其作为预测的影响参数。将瓦斯涌出量作为目标参数。分别将影响参数和目标参数作为GA-SVM的输入值和输出值进行训练,训练后的预测输出和期望输出之间的误差绝对值作为GA的适应度函数值进行参数优化。结果表明,该预测模型预测的最大相对误差为5.878 2%,最小相对误差为0.923 0%,平均相对误差为2.180 9%,相比耦合前及其他预测模型有更强的泛化能力和更高的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号