首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Honda K  Mizukami M  Ueda Y  Hamada N  Seike N 《Chemosphere》2007,68(9):1763-1771
The residue level of 21 polycyclic aromatic hydrocarbons (PAHs) and the temporal changes in this level were investigated in paddy soils collected from particular experimental sites in Japan from 1959 to 2002. The average total PAH concentration in all the samples was 496 microg kg(-1), and it ranged from 52.9 to 2180 microg kg(-1). The residue level of the PAHs was the highest during the 1960s, rapidly decreased during the 1970s, and remained almost constant thereafter. Relatively high PAH concentrations were observed in soils from areas that experienced heavy snowfall and that had relatively low air temperature. The predominant PAHs were phenanthrene, fluoranthene, naphthalene, and pyrene, and their concentration overall and in relation to that of the total PAHs decreased each year since the 1960s. Similarities in the PAH profiles among the locations were determined using the concentration correlation matrix and cluster analysis, and ratios of the levels of specific PAH pairs were also calculated to determine their origin. The collected data suggested that the origins of soil PAHs changed chronologically from the burning of agricultural wastes such as stubble before the mid-1970s to the combustion of fossil fuel and its secondary products after the mid-1970s.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) were quantified in 30 soil profiles from the Yangtze River Delta Region, in east China. Relative concentrations of PAH compounds with different benzene rings and ratios of fluoranthene to fluoranthene plus pyrene and benz(a)anthracene to benz(a)anthracene plus chrysene were used to identify the possible sources of soil PAHs. Total concentrations of 15 PAHs in topsoils ranged from 8.6 to 3881 microg kg(-1) with an average of 397 microg kg(-1). Half of the soil samples were considered to be contaminated with PAHs (>200 microg kg(-1)) and two sampling sites were heavily polluted by PAHs with concentrations >1000 microg kg(-1). Phenanthrene was found in soils below a depth of 100 cm in half of the sampling sites, but the detectable ratio of benzo(a)pyrene decreased sharply from 100% in topsoil to 0 in the 4th horizon.  相似文献   

3.
Yu XZ  Gao Y  Wu SC  Zhang HB  Cheung KC  Wong MH 《Chemosphere》2006,65(9):1500-1509
The concentration, distribution, profile and possible source of polycyclic aromatic hydrocarbons (PAHs) in soil were studied in Guiyu, an electronic waste (E-waste) recycling center, using primitive technologies in Southeast China. Sixteen USEPA priority PAHs were analyzed in 49 soil samples (0-10 cm layer) in terms of individual and total concentrations, together with soil organic matter (SOM) concentrations. The concentrations of a sum of 16 PAHs ranged from 44.8 to 3206 microgkg(-1) (dry weight basis), in the descending order of E-waste open burning sites (2065 microgkg(-1))>areas near burning sites (851microgkg(-1))>rice fields (354 microgkg(-1))>reservoir areas (125microgkg(-1)). The dominant PAHs were naphthalene, phenanthrene and fluoranthene, which were mainly derived from incomplete combustion of E-waste (e.g. wire insulations and PVC materials), and partly from coal combustion and motorcycle exhausts. All individual and total PAH concentrations were significantly correlated with SOM except for naphthalene and acenaphthylene. Principal component analysis was performed, which indicated that PAHs were mainly distributed into three groups in accordance with their ring numbers and biological and anthropogenic source. In conclusion, PAH concentrations in the Guiyu soil were affected by the primitive E-waste recycling activities.  相似文献   

4.
Surface soil (0-20 cm) samples from nine representative vegetable fields located in Guangzhou, Shenzhen, Zengcheng and Huadu within the Pearl River Delta, South China were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography coupled to mass spectrometry (GC-MS). Total concentrations of 16 PAHs (Sigma(PAHs)) ranged from 160 to 3700 microg kg(-1). Large variations were observed also between concentrations of individual PAHs from different vegetable fields and within the site as well. Acenapthylene, benzo[b]fluoranthene, fluoranthene, benzo[a]pyrene and benzo[k]fluoranthene were consistently the most prevalent individual PAHs. The values of PAH isomer ratios [anthracene/(anthracene+phenanthrene) and fluoranthene/(fluoranthene+pyrene)] indicate that combustion processes are the major sources of PAHs. Concentrations of PAHs were poorly correlated with organic carbon concentrations of soils, suggesting different sources and also indicating that the PAH pollution of this area is recent. The same outcome is confirmed by the predominance of PAHs with fewer rings (相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) are considered to act additively when exposed as congener mixtures. Additive internal concentrations at the site of toxic action is the basis for recent efforts to establish a sum PAH guideline for sediment-associated PAH toxicity. This study determined the toxicity of several PAH congeners on a body residue basis in Diporeia spp. These values were compared to the previously established LR(50) value for a PAH mixture based on the molar sum of PAH congeners and demonstrated similar LR(50) values for individual PAH. These results support the contention that the PAH act at the same molar concentration whether present as individual compounds or in mixture. Aqueous exposures were conducted for 28 d, and the water was exchanged daily to maintain the exposure concentration. The concentration in the exposures declined by an average of 22% between water exchanges across all compounds, and ranged from 11% to 32%. The toxicokinetics were determined using both time-weighted-average (TWA) and time-variable water concentrations and were not statistically different between the two source functions. Toxicity was determined for both mortality and immobility (failure to swim on prodding) and on both a TWA water concentration and a body residue basis. The LC(50) values ranged from 1757 microg l(-1) for naphthalene after 10 d exposure to 79.1 microg l(-1) for pyrene after 28 d exposure, and the EC(50) ranged from 1587 microg l(-1) for naphthalene after 10 d exposure to 38.2 microg l(-1) for pyrene after 28 d exposure. The LR(50) values for all congeners at all lengths of exposure were essentially constant and averaged 7.5+/-2.6 micromol g(-1), while the ER(50) for immobility averaged 2.6+/-0.6 micromol g(-1). The bioconcentration factor declined with increasing exposure concentration and was driven primarily by a lower uptake rate with increasing dose, while the elimination remained essentially constant for each compound.  相似文献   

6.
Olivella MA 《Chemosphere》2006,63(1):116-131
Fourteen polycyclic aromatic hydrocarbons (PAHs) were measured in surface waters and precipitation inputs to Lake Maggiore, a subalpine lake in Northern Italy, from July 2003 to January 2004. Particulate and dissolved phases in surface water and rain samples were determined. Analyses of PAHs were performed using XAD-2 resin to isolate the dissolved PAHs and subsequent extraction by accelerated solvent extraction (ASE). Both the dissolved and particulate phase PAH patterns in surface water and rainwater samples were dominated by the low molecular weight compounds (e.g., phenanthrene, fluoranthene and pyrene). More than 85% of PAHs in surface waters and 72% of PAHs in rainwater were associated to the dissolved phase. The SigmaPAH concentrations in surface waters (particulate and dissolved phases) were 0.584 +/- 0.033 ng l(-1), 2.9 +/- 0.312 ng l(-1) and in rainwater (particulate and dissolved phases) 27.5 +/- 2 ng l(-1), 75.4 +/- 9 ng l(-1), respectively. Temporal variability of PAH concentrations in rain and surface water samples were observed, with higher concentrations in November and December, coinciding with the largest precipitation amounts. The comparison of PAH signatures in rainwater and surface waters seems to indicate that wet deposition (2.5-41 microg m(-2) month(-1)) is the main source of PAH contamination into surface waters of Lake Maggiore.  相似文献   

7.
The toxicity of a polycyclic aromatic hydrocarbon (PAH) mixture was assessed on the indigenous microbial communities of a natural freshwater sediment. The fate and effects of the PAH mixture (phenanthrene, fluoranthene and benzo(k)fluoranthene) were studied over 28 days. Bacterial communities were described by bacterial counts (total bacteria and viable bacteria), and by some hydrolytic enzyme activities (beta-glucosidase and leucine-aminopeptidase), PAH concentrations were measured in the overlying waters and in the sediments. No effect of PAH was detected at 30 mg/kg for all bacterial parameters. At 300 mg/kg, the quantity of total bacteria and the proportion of viable bacteria markedly decreased, compared to the control (0 mg PAH/kg). At 300 mg/kg, an increase of the beta-glucosidase activity and a decrease of the leucine-aminopeptidase activity were observed. For all treatments, the benzo(k)fluoranthene concentration in the sediment was stable over 28 days whereas, in the same time, only 3-6% of the initial concentrations of phenanthrene and fluoranthene remained. This study shows that (1) PAH induce perturbations of sediment microbial communities in terms of density and metabolism (but not always as an inhibition), (2) indigenous bacteria of sediments might be used for toxicity assessment of specific organic pollutants, (3) native microorganisms of sediment seem to have a high capacity for PAH degradation, depending on the physico-chemical properties and the bioavailability of the substance encountered.  相似文献   

8.
Thirteen sediment samples from different locations in the Niger Delta region of Nigeria were analyzed for the presence of 16 polynuclear aromatic hydrocarbons (PAHs) via gas chromatography/mass spectrometry. The specific target compounds for this study included naphthalene, acenaphthylene, acenaphthene, flourene, phenanthrene, anthracene, flouranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]flouranthene, benzo[a]pyrene, benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene. Four isotopically labeled polynuclear aromatic hydrocarbons (acanaphthene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12) were used for internal standardization. All 16 PAHs were found in most of the thirteen samples with concentration ranging from 0.1 microg/kg to 28 microg/kg. It was also found that the 5 and 6-ring PAHs were present in higher concentrations than all the other compounds, indicating their high resistance to microbial degradation.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) in a sediment core taken from intertidal flat in the Yangtze Estuary were determined by gas chromatography-mass spectrometry. The results indicate that the total concentration of PAHs ranged from 0.08 to 11.74 microg/g. The concentration levels of total and individual PAHs changed dramatically with depth. The concentrations of PAHs were relatively high above 35 cm depth and remained constantly low below this depth. The historical record of PAHs in the core shows subsurface maximum (one or more peak values), followed by decreased levels to the surface and with depth. And, PAH sediment record in the core profile is in agreement with historically sewage discharge events during the 1980s to 1990s. The distribution of target molecule acenephthene, the fluoranthene/pyrene ratio, the proportion of 2-3-ring and 4-5-ring PAHs, and alkylated naphthalene to parent naphthalene in the core profile show that the sources in this area are characterized by petroleum-derived PAH contamination (mainly sewage discharge and the river runoff) and the incorporation of atmospheric inputs. Studies indicate the PAH profile pattern in this site in comparison with other regions appear to reflect its particular local position (near the sewage outlet). Moreover, physico-chemical conditions and sedimentation rate as well as biodegradation also affect the PAH concentration levels in the core sediments.  相似文献   

10.
Ship-board air samples collected between The Netherlands and South Africa in January-February 2001 were analysed for polycyclic aromatic hydrocarbons (PAHs) and polychlorinated naphthalenes (PCNs). The highest PAH concentrations occurred in the European samples, and in samples close to West Africa and South Africa. Consistently low PAH concentrations were measured in the southern hemisphere open ocean samples (190-680 pg/m3). The highest PCN concentrations occurred in the European samples, but high values were also detected off the West African coast, and in the sample taken closest to South Africa. Data are presented for diurnal cycles taken in the remote South Atlantic. The day:night ratios of phenanthrene, 1-methylphenanthrene and fluoranthene were typically approximately 1.5-2.5:1. The mechanism(s) causing this observation is/are not understood at present, but dynamic environmental process(es) is/are implicated.  相似文献   

11.
Pekey B  Karakaş D  Ayberk S 《Chemosphere》2007,67(3):537-547
Wet deposition and dry deposition samples were collected in an urban/industrialized area of Izmit Bay, North-eastern Marmara Sea, Turkey, from September 2002 to July 2003. The samples were analyzed for sixteen polycyclic aromatic hydrocarbon (PAH) compounds by using HPLC-UV technique. Wet and dry deposition concentrations and fluxes of PAHs were determined. The results showed that PAH concentrations were high because of industrial processes, heavy traffic and residential areas next to the sampling site. Total dry deposition flux of the fifteen 3-6 ring PAHs was 8.30 microg m(-2)day(-1), with a range of 0.034-1.77 microg m(-2)day(-1). The total wet deposition flux of the fifteen 3-6 ring PAHs was 1716 microg m(-2) 11 month(-1), with a range of 10-440 microg m(-2) 11 month(-1). Significant seasonal differences were observed in both types of deposition samples. The winter fluxes of total PAHs were 1.5 and 2.5 times greater than those of the warm period for wet and dry deposition samples, respectively. Factor analysis of dry deposition samples and back trajectory analysis of wet deposition samples were also used to characterize and identify the PAH emission sources in this study.  相似文献   

12.
Distributions and concentrations of PAHs in Hong Kong soils   总被引:19,自引:0,他引:19  
Surface soil (0-10 cm) samples from 53 sampling sites including rural and urban areas of Hong Kong were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations were in the range of 7.0-410 microg kg(-1) (dry wt), with higher concentrations in urban soils than that in rural soils. The three predominant PAHs were Fluoranthene, Naphthalene and Pyrene in rural soils, while Fluoranthene, Naphthalene and Benzo(b + k)fluoranthene dominated the PAHs of urban soils. The values of PAHs isomer indicated that biomass burning might be the major origin of PAHs in rural soils, but vehicular emission around the heavy traffic roads might contribute to the soil PAHs in urban areas. A cluster analysis was performed and grouped the detectable PAHs under 4 clusters, which could be indicative of the PAHs with different origins and PAHs affected by soil organic carbon contents respectively.  相似文献   

13.
The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources.  相似文献   

14.
Benzo(a)pyrene [B(a)P] air levels were measured in Florence (Italy) in the period 1992-2001. For the period 1999-2000 seven polycyclic aromatic hydrocarbons (PAH) (benzo(a)anthracene, crysene, benzo(a)pyrene (B(a)P), benzo(b)fluoranthene (B(b)F), benzo(k)fluoranthene, dibenzo(a,h)anthracene (DBA) and benzo(g,h,i)perylene (BGP)), were measured in the air in four different sites (one with heavy traffic (A), one in a park (B), one in a residential area (C) and one in a hill area (D)). B(a)P levels were elevated in 1992-1998 (maximum average value of winter months: 5.8 ng/ m3) but a decreasing trend was observed in the following years, probably due to improvement in vehicle emissions. The sum of PAH in the air in the period 1999-2000 was about one order of magnitude lower in the hill site (D) relative to the urban sites, and residential areas (B and C) had values 2.5-3 times lower compared to site A with a heavy traffic. PAH concentrations decreased in the warmer seasons of 2000 in all sites. A negative correlation was found between PAH levels and ozone. A positive correlation with carbon monoxide (CO) (r = 0.862, P < 0.001) and low B(a)P/BGP ratios, ranging from 0.44 to 0.51, indicated that vehicular traffic was the major PAH source in all monitored sites. Using B(a)P(TEF) values (toxic equivalency factors) for evaluating the biological activity of PAH, we found that the highest PAH contributors in terms of potential air carcinogenic activity were B(a)P and DBA. Therefore, in addition to B(a)P, DBA concentration should be considered in the evaluation of air quality in terms of PAH contamination.  相似文献   

15.
Leaf samples of six tree species were collected along urban roadsides and a campus site in Beijing for measurement of polycyclic aromatic hydrocarbons (PAHs). PAHs in leaves were attributed to two fractions, leaf cuticles and inner leaf tissues, using sequential extraction. Total concentrations of 16 PAHs in the cuticles and the inner tissues were 69.3+/-64.6 microg g(-1) (d.w.) and 1.07+/-0.2 microg g(-1) (d.w.) at roadside and 57.5+/-52.6 microg g(-1) and 0.716+/-0.2 microg g(-1) on campus, respectively. The lipid-normalized inner tissue PAHs varied from 5.8 microg g(-1) to 15.0 microg g(-1). Similarities in PAH spectra between leaf cuticles and airborne particles and between the inner tissues and gaseous phase imply that airborne particulates and gaseous PAHs are likely the sources of PAHs for cuticles and the inner tissues, respectively. Difficulty in migration of heavier PAHs into inner tissues could be another reason.  相似文献   

16.
The concentrations of total polycyclic aromatic hydrocarbons (sigmaPAHs) and 15 individual PAH compounds in 20 surface sediments collected from four mangrove swamps in Hong Kong were analysed. sigmaPAH concentrations ranged from 356 to 11,098 ng g(-1) dry weight with mean and median values of 1992 and 1,142 ng g(-1), respectively. These values were significantly higher than those of marine bottom sediments of Hong Kong harbours, suggesting that more PAHs were accumulated in mangrove surface sediments. The concentrations of sigmaPAHs as well as individual PAH compound varied significantly among mangrove swamps. The swamps heavily polluted by livestock and industrial sewage, such as Ho Chung and Mai Po, had much higher concentrations of total PAHs and individual PAH than the other swamps. The PAH profiles were similar among four mangrove swamps, and were dominated by naphthalene (two-ring PAH), fluorene and phenanthrene (three-ring PAH). The mangrove sediments had higher percentages of low-molecular-weight PAHs. These indicated that PAHs in mangrove sediments might originate from oil or sewage contamination (petrogenic input). Ratio values of specific PAH compounds such as phenanthrene/anthracene and fluoranthene/ pyrene, were calculated to evaluate the possible source of PAH contamination in mangrove sediments. These ratios varied among samples, suggesting that mangrove sediments might have a mixed pattern of pyrolytic and petrogenic inputs of PAHs. Sediments collected from Ho Chung mangrove swamp appeared to be more dominated by pyrolytic input while those from Tolo showed strong petrogenic contamination.  相似文献   

17.
Over a period of two years (2000-2001), sediment samples were extracted from 40 silt traps (STs) spread through the combined sewer system of Paris. All sediment samples were analysed for physico-chemical parameters (pH, organic matter content, grain size distribution), with total hydrocarbons (THs) and 16 polycyclic aromatic hydrocarbons (PAHs) selected from the priority list of the US-EPA. The two main objectives of the study were (1) to determine the hydrocarbon contamination levels in the sediments of the Paris combined sewer system and (2) to investigate the PAH fingerprints in order to assess their spatial variability and to elucidate the PAH origins. The results show that there is some important inter-site and intra-site variations in hydrocarbon contents. Despite this variability, TH and PAH contamination levels (50th percentile) in the Parisian sewer sediment are estimated at 530 and 18 microg g(-1), respectively. The investigation of the aromatic compound distributions in all of the 40 STs has underlined that there is, at the Paris sewer system scale, a homogeneous PAH background pollution. Moreover, the study of the PAH fingerprints, using specific ratios, suggests the predominance of a pyrolytic origin for those PAHs fixed to the sewer sediment.  相似文献   

18.
The levels and distribution of polynuclear aromatic hydrocarbons (PAHs) were determined in soil samples from background locations in the UK and Norway, to investigate their spatial distribution and the controlling environmental factors. Concentrations ranged between 42 and 11200 microg kg(-1) (geometric mean 640 microg kg(-1)) and 8.6 and 1050 microg kg(-1) (150 microg kg(-1)) dry weight in the UK and Norwegian soil, respectively. Proximity to sources and locations susceptible to high atmospheric depositional inputs resulted in higher concentrations. Statistically significant relationships were observed between PAH and total organic carbon (TOC) in the Norwegian samples. High molecular weight PAHs correlated with black carbon (BC) in UK-woodland soil. These observations support the hypothesis that TOC plays an important role in the retention of PAHs in soil and that PAHs are often combined with BC during combustion emissions. PAHs with 4 and more rings comprised approximately 90% of total PAHs in the UK soil, but only 50% in the Norwegian soil. The mixture of PAHs implied that fractionation occurred during long-range atmospheric transport and deposition. The lighter PAHs with lower K(ow) values more readily reached the most remote sites. The heavier PAHs with higher K(ow) values remained in closer proximity to sources.  相似文献   

19.
Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in Spartina alterniflora plants grown in pots of contaminated sediment, plants grown in native sediment at a marsh contaminated with up to 900 microg/g total PAHs, and from plants grown in uncontaminated control sediment. The roots and leaves of the plants were separated, cleaned, and analyzed for PAHs. PAH compounds were detected at up to 43 microg/g dry weight in the root tissue of plants grown in pots of contaminated soil. PAH compounds were detected at up to 0.2 microg/g in the leaves of plants grown in pots of contaminated soil. Concentrations less than 0.004 microg/g were detected in the leaves of plants grown at a reference site. Root concentration factor (RCF) values ranged from 0.009 to 0.97 in the potted plants, and from 0.004 to 0.31 at the contaminated marsh site. Stem concentration factor (SCF) values ranged from 0.00004 to 0.03 in the potted plants and 0.0002 to 0.04 at the contaminated marsh. No correlation was found between the RCF value and PAH compound or chemical properties such as logKOW. SCF values were higher for the lighter PAHs in the potted plants, but not in the plants collected from the contaminated marsh. PAH concentrations in the roots of the potted plants are strongly correlated with soil concentrations, but there is less correlation for the roots grown in natural sediments. Additional plants were grown directly in PAH-contaminated water and analyzed for alkylated PAH homologs. No difference was found in leaf PAH concentrations between plants grown in contaminated water and control plants.  相似文献   

20.
Dai J  Xu M  Chen J  Yang X  Ke Z 《Chemosphere》2007,66(2):353-361
In order to better understand land application of sewage sludge, the characterization of heavy metals, PCDD/F and PAHs in sewage sludge was investigated from six different wastewater treatment plants (WWTP) in Beijing City, China. It was found that the total concentrations of Zn in Wujiacun (WJC) sewage sludge, and Cd and Hg in sewage sludge generated from all of the six different places are higher than Chinese regulation limit of pollutants for sludge to be used for agriculture (GB18918-2002). The levels of 16 PAHs that have been categorized as priority pollutants by US EPA in the sewage sludge samples varied from 2467 to 25923 microg/kg (dry weight), the highest values of 25923 microg/kg being found in WJC WWTP. The concentrations of Benzo[a]pyrene were as high as 6.1mg/kg dry weight in WJC sewage sludge, exceeding the maximum permitted content by GB18918-2002. Individual PAH content varies considerably with sewage samples. The ratios of anthracene to anthracene plus phenanthrene (An/178), benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/228), indene[1,2,3-cd]pyrene to indene[1,2,3-cd]pyrene plus benzo[g,h,i]perylene (In/In+BP), and fluoranthene to fluoranthene plus pyrene (Fl/Fl+Py) suggest that petroleum and combustion of fossil fuel were the dominant contributions for the PAHs in sewage sludge. The concentrations of total PCDD/F in the sewage sludge ranged from 330 to 4245 pg/g d.w. The toxicity equivalent concentrations is between 3.47-88.24 pg I-TEQ according to NATO/CCMS, which is below Chinese legislation limit value proposed for land application. The PCDD/F congener/homologue profiles found in the Beijing samples indicated that the high chlorinated PCDD/F contamination might originate mainly from PCP-related source and depositional sources while the low chlorinated PCDD/F homologues could be originating from incineration or coal combustion. The major source of PCDD/Fs in Beijing sludge is still unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号