首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D. Dean 《Marine Biology》1978,48(1):99-104
Glycerid polychaetous annelids have been thought to have only limited migratory ability and to swim in the water column only for reproductive purposes. Nevertheless, adult Glycera dibranchiata were observed swimming in the upper 0.75 m of water in the Damariscotta River estuary, Maine, USA, on 5 nights in March of 1977. Of the 15 specimens collected with a dip net, 9 were females and 6 were males. None had ripe gametes. Worms weighed from 8.0 to 22.8 g, and were up to 42 cm in length. The presence of glycerids in buoyed and anchored nets fished at night in two other Maine estuaries lend support to the conclusion that the swimming of bloodworms at night is not an anomalous event. Twenty-four specimens of 5 other species of polychaetes and two specimens of a nemertean were collected from surface waters during 52 min of sampling on two nights in March. It is suggested that the swimming of worms at night in estuaries is a much more common phenomenon than was recognized heretofore.Contribution No. 103 of the Ira C. Darling Center, Walpole, Maine 04573, USA.  相似文献   

2.
The relationship between Penaeus merguiensis protozoea larvae and their phytoplankton diet was examined using seasonal plankton surveys and in situ rearing experiments. Larval abundance, phytoplankton community structure, and chlorophyll a concentration in Albatross Bay, Gulf of Carpentaria, were monitored monthly for 2 yr. Larval abundance peaked in November (spring) and March (autumn), at which times diatoms were the most abundant group in net samples of phytoplankton and in the guts of larvae. During November 1989 and March 1990, larvae were reared in nylon mesh enclosures positioned throughout the water column at three depths: 0 to 3 m, 3 to 6 m and 6 to 9 m. Overall, larval survival and gut fullness were both higher in November than in March. In both months, larval survival was lower at the surface than at other depths. This correlated with lower chlorophyll a concentrations, but lower total cell densities were not detected. During the in situ experiments, diatoms were the most abundant phytoplankton group in the water column and in the guts of larvae and, therefore, appeared to be the principal diet of larvae. Pigment analysis demonstrated that while gut contents generally reflected the composition of the phytoplankton community, the larvae were not feeding exclusively on diatoms. They also ingested green algae and possibly seagrass detritus. The in situ experiments demonstrated that the predominantly diatom flora in Albatross Bay can provide a nutritionally adequate environment for prawn larvae even at seasonally low levels. It is unlikely, therefore, that starvation is a major cause of mortality of P. merguiensis larvae during either of the biannual peaks in their abundance in Albatross Bay, Gulf of Carpentaria.  相似文献   

3.
Day-night differences in abundance and biomass of demersal zooplankton in the water column were determined by trapping these animals as they emerged from the sand substrate in a kelp forest (Macrocystis pyrifera) ecosystem off Santa Catalina Island, California, USA. The day and night sampling periods of the 24 June 1979 new moon each lasted 12 h. Abundance and biomass of total demersal zooplankton were significantly higher in night samples. A mean of 2,425±1,168 demersal zooplankton m-2 24 h-1 migrated over a diel cycle; 97% of these animals were crustaceans. The mean biomass of demersal zooplankton was 94.2±27.6 mg ash-free dry wt m-2 24 h-1. No significant differences were found in either the abundance or biomass of demersal zooplanktion collected in low and high traps, suggesting that most animals collected 25 cm off the bottom can sustain swimming to at least 75 cm and that both traps give comparable estimates of the amount of demersal zooplankton available to planktivorous predators.  相似文献   

4.
D. Dean 《Marine Biology》1978,45(2):165-173
There have been many previous reports of the sandworm Nereis virens Sars swimming in the water column. This behavior usually has been attributed to reproductive processes. Sandworms were found swimming in surface waters at night on ebb tides during many nights of January, February and March in a Maine (USA) estuary. None of the specimens examined contained gametes or possessed other characteristic spawning or pre-spawning modifications. Several age classes were found, with worms measuring 9 to 38 cm in length, weighing 0.5 to 19.8 g, and having 82 to 187 segments. The greatest numbers of worms were observed during near-average tides on evenings in which low tides occurred a few hours after sunset but prior to moonrise. Up to 83 worms per minute were observed swimming seaward through a 20 m transect, while none were observed swimming landward at any stage of the tide. It is concluded that sandworms swimming during winter nights is unrelated to reproduction and that it is an inherent behavior pattern.Contribution No. 102 of the Ira C. Darling Center, Walpole, Maine 04573, USA.  相似文献   

5.
E. Mutlu 《Marine Biology》2001,138(2):329-339
The distribution of moon jellyfish (Aurelia aurita Linnaeus, 1758) in the Black Sea was determined from plankton samples collected above the anoxic zone (maximum depth 200 m) in the summer, winter and spring during 1991–1995. Distribution was patchy. Average biomass ranged from 98 to 380 g m−2, and abundance varied from 2 to 14 individuals m−2. Biomass and abundance peaked in late spring and summer. The distribution was correlated with hydrographic features in the Black Sea, with higher concentrations occurring at the peripheries of anticyclonic eddies. Centers of the two main cyclonic gyres generally had a low biomass of A. aurita. From July 1992 to March 1995, the populations were largely concentrated in offshore regions. A. aurita were confined to the upper part of the mixed layer. Smaller A. aurita (≤1 cm) were present in early spring (March), and individuals reached maximum size in the summer. Release of the epyhrae occurred in spring on the northwestern shelf of the sea when the seawater temperature was 11–12 °C. Microscopic analysis of stomach contents showed that copepods and mollusks form their main diet. Received: 3 September 2000 / Accepted: 29 September 2000  相似文献   

6.
A mass synchronous spawning of the sea urchin Evechinus chloroticus (Valenciennes) was observed in situ in Doubtful Sound, a large New Zealand fiord. Spawning occurred between 17:30 hrs and 18:30 hrs on 27 January 1994 and coincided with a full moon, spring tides and a period of decreasing sea temperatures. During spawning, the sea urchins formed a dense spawning aggregation of both sexes, with >90% of the urchins observed spawning at the time. Spawned gametes clouded the water column, and some were eaten by small labrid fish species. The spawning, which may have been as widespread as 40 km, marked a 42 to 50% decrease in gonad indices and resulted in a widespread, dense cohort of  E. chloroticus larvae within the fiord. Received: 25 September 1997 / Accepted: 6 March 1998  相似文献   

7.
Pocillopora damicornis (Linnaeus), which is known to release planula larvae on a monthly cycle, was grown in full daytime solar irradiance, but with four treatments of night irradiance: (1) natural night irradiance, (2) shifted-phase (total darkness during nights of full moon with artificial irradiance at lunar intensity on nights of new moon), (3) constant full moon (full lunar irradiance every night), and (4) constant new moon (total darkness every night). The reproductive cycle of the corals held in the shifted-phase treatment moved out of synchrony with the cycle of corals exposed to a natural lunar cycle of night irradiance. Two previously described types of P. damicornis were tested. The Type Y normally start releasing larvae at full moon, with peak production at third quarter. In the shifted-phase treatment they began releasing planulae at new moon (artificial full moon), with peak production at first quarter. The Type B corals, that normally start releasing planulae at new moon with peak production at first quarter, began to release planulae at full moon (artificial new moon), with peak production at third quarter. Populations of corals grown either in the constant full moon or constant new moon treatment quickly lost synchronization of monthly larva production, although production of planulae continued. Thus spawning is synchronized by night irradiance.Contribution No. 702 of the Hawaii Institute of Marine Biology  相似文献   

8.
In three Clunio stocks, two from the Mediterranean Sea (Banyuls, Rovinj) and one from the Black Sea (Sosopol), an identical circasemilunar eclosion pattern in combination with a circadian eclosion time of day was evoked in breeding experiments under an artificial moonlight cycle (four nights of 0.3 lux every 30 d, 12 h light:12 h dark). The eclosion peaks occurred on days with artificial moonlight and approximately 2 weeks later, and with regard to the time of day between mid-night and lights-on. In spite of the weak tidal amplitudes on Mediterranean shores, extreme low water levels occur when a nocturnal low-water time coincides on days around full and new moon (spring-tide situation) with winds from land to sea. Field observations at Banyuls and Rovinj agree with the experimental results. In contrast to Clunio spp. adults (life span only a few hours), Thalassomyia frauenfeldi adults (life span up to several days in the laboratory) demonstrated an unsynchronized eclosion pattern in the experiments (no lunar concentration, wide diurnal eclosion gate). Although inhabiting the same intertidal area, T. frauenfeldi walking on exposed intertidal substrates can delay egg-deposition for days and can probably wait for favorable low water levels. The taxonomical status of European Clunio populations is reviewed; minute morphological distinctions are presented for C. mediterraneus in the otherwise morphologically uniform, but ecophysiologically differentiated genus. Received: 15 May 1997 / Accepted: 16 June 1997  相似文献   

9.
Alldredge  A. L.  King  J. M. 《Marine Biology》1985,84(3):253-260
The distance demersal zooplankton (mobile, benthic organisms which periodically emerge from the benthos and move up into the water column) swim vertically above the bottom at night was measured quantitatively on a subtidal sand flat in the Gulf of California during July, 1979. Three patterns of migration were observed: (1) small-bodied animals, including copepods, ostracods and the amphipod Metaceradocus occidentalis, remained within 30 cm of the bottom except at full moon when a significantly higher proportion of these animals swam up at least 1 m into the water column, (2) syllid polychaetes swam up at least 2 m into the water column irregardless of the phase of the moon, and (3) large-bodied forms (animals >2 mm) swam throughout the water column but in gradually decreasing abundances nearer the surface. Since nocturnally foraging planktivorous fishes feed primarily on the large-bodied, readily visible animals, we had predicted that these large forms would remain near the relative safety of the benthos. However, the movement of the larger demersal zooplankton higher into the water column than the smaller, less visible forms, suggests that factors other than predation, possibly dispersal, may be major selective pressures governing the distance demersal zooplankton swim above the benthos.  相似文献   

10.
The present study followed the temporal recruitment pattern of brachyuran larvae in a mangrove tidal creek on the Andaman Sea coast of Ranong Province, Thailand, based on the assumption that the processes governing recruitment are important for the overall population dynamics of mangrove brachyuran crabs. Plankton net samples were taken on five occasions: on two new moon spring tides, one waxing moon neap tide, one full moon spring tide and one waning moon neap tide during October and November 1997. In addition collectors for larval crab megalopae were employed every 3 days through one dry season and one wet season (March–October 1998). Both the plankton net samples and collector samples revealed four major brachyuran groups in three families: Ocypodidae, Grapsidae and Portunidae. The grapsid group was further separated into two morphotypes which were identified as Metaplax and sesarmid species. Identified group mean numbers per cubic metre were ocypodids 3.0, sesarmids 0.8 and Metaplax 0.5, while portunid megalopae were very scarce (≪0.1 m−3). Further analysis of plankton net samples showed that when considering the parameters date, depth, current direction and the diel cycle, Metaplax and ocypodids distribute differently in the tidal and lunar cycle. Metaplax recruitment dominates on flood tides and on bottom layers, followed by middle and surface layers. Conversely, ocypodid abundance varied significantly with date only. Notably recruitment was not dependent on the diel cycle for either group. The collector samples of megalopae showed that recruitment of ocypodids, Metaplax and sesarmids occurred on full and new moon spring tides, while portunid megalopae preferred to settle on full moon spring tides. Since tidal currents were related to the lunar cycle megalopa groups are also cross-correlated with tidal amplitude, except for the portunid group. It is concluded that megalopae recruit in a similar manner to what has been found in other regions of the world, except that the abundance of ocypodids and Metaplax is not influenced by the diel cycle. Received: 14 February 2000 / Accepted: 24 November 2000  相似文献   

11.
Stenobrachius leucopsarus, the most abundant species of myctophid fishes off Oregon, USA, has a bimodal distribution at night, with a peak of abundance in the upper 100 m composed of diel vertical migrants, and another peak at 300 to 500 m composed of fish that did not migrate the night they were caught. We compared the feeding habits of these two groups of fish in an attempt to learn if deep fish migrated to surface waters. Low similarity of diets, differences in the rank order of common prey, and similar states of stomach fullness and digestion of prey suggest that fish captured in deep water at night probably did not feed exclusively in shallow water on previous nights. They probably fed in deep water. The similarity in food habits between deep and shallow fish is most readily explained by daytime feeding by fish in deep water and by broad vertical distributions of prey.  相似文献   

12.
 The present study was conducted on a Mediterranean beach (Burano, southern Tuscany, Italy) to examine the timing, orientation, and motivating and directing factors of the spontaneous movements of the sandhopper Talitrus saltator (Montagu, 1808). In April 1994, October 1994 and June 1995, during different moon phases, traps were positioned in the eulittoral zone, which intercepted sandhoppers when walking on the sand surface. At the same time environmental parameters were registered. Contemporaneously, orientation tests were carried out on active individuals using two arenas, one of which permitted a view of both sky and landscape and one which prohibited the landscape view. The results show landward migration after sunset, for juveniles later than for adults, nonoriented activity for 2 or 3 h after midnight and seawards zonal recovery before and after sunrise. The main microclimatic factor modulating activity was sand temperature, while the nonoriented activity between the two migratory movements seems to be endogenously determined. Both sky and landscape cues are used by sandhoppers for orienting their course, but the landscape view is sufficient and necessary on new moon nights. These results contribute to solution of the controversy on the mechanisms actually motivating sandhoppers in nature. Received: 24 September 1996 / Accepted: 25 October 1996  相似文献   

13.
Few time series collections have been made of the larval ichthyofauna in waters directly above shallow coral reefs. As a result, relatively little is known regarding the composition and temporal dynamics of larval fish assemblages in shallow-reef waters, particularly those near a major western boundary current. We conducted a series of nightly net tows from a small boat over a shallow reef (Pickles Reef) along the upper Florida Keys during four new moon and three third-quarter moon periods in July (two new moons), August, and September 2000. Replicate tows were made after sunset at 0–1 m and at 4–5 m depth to measure the nightly progression in community composition, differences in depth of occurrence, and abundance and diversity with lunar phase. A total of 66 families was collected over the 3-month period, with a mean (±SE) nightly density of 23.7±2.1 larvae per 100 m 3 and diversity of 24.2±0.9 taxa per tow. A total of 28.8% of the catch was composed of small, schooling fishes in the families Atherinidae, Clupeidae, and Engraulidae. Of the remaining catch, the top ten most abundant families included reef fishes as well as mangrove and oceanic taxa (in descending order): Scaridae, Blennioidei (suborder), Gobiidae, Paralichthyidae, Lutjanidae, Haemulidae, Labridae, Gerreidae (mangrove), Balistidae, and Scombridae (oceanic). These near-reef larval fish assemblages differed substantially from those collected during previous offshore collections. Taxa such as the Haemulidae were collected at a range of sizes and may remain nearshore throughout their larval period. Overall, the abundance and diversity of taxa did not differ with depth (although within-night vertical migration was evident) or with lunar phase. Temporal patterns of abundance of larval fish families clustered into distinct groups that in several cases paralleled family life-history patterns. In late July, a sharp shift in larval assemblages signaled the replacement of oceanic water with inner shelf/bay water. In general, the suite and relative abundance of taxa collected each night differed from those collected on other nights, and assemblages reflected distinct nightly events as opposed to constant or cyclical patterns. Proximity to the Florida Current likely contributes to the dynamic nature of these near-reef larval assemblages. Our results emphasize the uniqueness of near-reef larval fish assemblages and point to the need for further examination of the biophysical relationships generating event-related temporal patterns in these assemblages.  相似文献   

14.
N. H. Marcus 《Marine Biology》1995,123(3):459-465
Few investigations have examined the occurrence of zooplankton resting eggs in the sea bed of waters deeper than 20 m. In this study the distribution and abundance of planktonic copepods and their benthic resting eggs in coastal waters off northern California, U.S.A., were determined and related to environmental parameters (temperature, salinity, depth, and sediment grain size). Sediment cores, net tows, and CTD profiles were obtained in April and October 1989, and February, April, and October 1990. Water depths in the study area ranged from approximately 60 to 120 m. The mean abundance of eggs was as high as 1.2×105 m-2 for Acartia clausi Giesbrecht and 1.9×105 m-2 for Tortanus discaudatus Thompson and Scott. These egg concentrations are comparable to those reported previously for shallower more protected regions. The abundance of eggs in the sediments decreased with increasing depth of the water column. For the region as a whole, eggs were least abundant in muddy sediments. The mean abundance of eggs in the sea bed also varied seasonally and annully. Benthic resting eggs of A. clausi were more abundant in April 1989 than in April 1990, and adults of the species were never found in the plankton samples. The lack of adults is not unusual since results of previous studies indicate that A. clausi is a cold-water species, and in this region water temperatures are colder in summer, than in winter, due to upwelling. Temperature and salinity data indicated that the upwelling season had commenced by the time of the April 1990, but not the April 1989 sampling. Thus, the reduced abundance of benthic eggs in April 1990 may have been due to egg-hatching in response to reduced temperatures. The results suggest that the presence of A. clausi in coastal waters off northern California is linked to recruitment from benthic resting eggs.  相似文献   

15.
C. Huang  S. Uye  T. Onbé 《Marine Biology》1992,113(3):391-400
The ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus was investigated in the Inland Sea of Japan in November 1988 and March 1989, when the water temperature was weakly stratified in a reversed manner. In both investigations a pronounced ontogenetic difference in vertical distribution was found. Spawning always occurred during nighttime, being confined to the upper 40 m water column in November but to the layer below 35 m in March. The distribution of pre-feeding nauplius stages, NI and NII, was more or less similar to that of the eggs. The first-feeding NIII performed a marked upward migration, and late nauplius stages (NIV to NVI) and early copepodite stages (CI and CII) continuously aggregated in the upper water column where phytoplankton was abundant. CIII to CVI (adult female and male) tended to disperse in the whole water column. In November, however, they avoided the upper 10 m strate during daytime and some individuals migrated upward to the surface during nighttime. In March, CV and CVI aggregated in the layer between 5 and 15 m deep in the daytime and migrated both upward and downward at dusk, resulting in homogeneous distributions during the nighttime.  相似文献   

16.
The spatial distribution of the most abundant eggs and larvae of teleost fish species on the continental shelf and slope off the northern Benguela region was studied in April 1986. The horizontal and vertical distribution of eggs and larvae were analysed together with environmental data, in order to determine patterns of ichthyoplankton distribution. Both species composition and relative egg and larval abundance levels exhibited important latitudinal differences during a period of quiescent upwelling with an intense intrusion of Angolan water into the system. Larval diversity was higher in the northern part of the study area, where, because of the intrusion of the warmer Angolan water, the water column was more stratified than in the southern part, where the affect of upwelling of South Atlantic Central Water was continuous and only a few species spawned. The frontal zone appeared to be a nursery ground for the most important pelagic species of the region:Trachurus trachurus capensis, Engraulis capensis, andSardinops ocellatus. Vertical egg and larval distributions showed evidence of stratification, with highest concentrations located in the uppermost 50 m. In comparison, during periods of intense upwelling, longitudinal gradients were responsible for the horizontal distribution of ichthyoplankton, and the vertical distribution of eggs and larvae were much more extensive because of the greater mixing of the water column.  相似文献   

17.
Choanoflagellates are thought to be an important component of oceanic microbial food webs, but little quantitative data exists on their abundance,, distribution, or relationship to potential food sources. In an Antarctic ice edge zone (northern Weddell Sea, March 1986), choanoflagellate abundance varied over two orders of magnitude in the upper 100 m. The lowest abundances were recorded at the bottom of the water column under ice cover and the highest abundances occurred in the upper 30 m of open water. Species that were predominantly in colonies dominated the open-water samples. Abundances of total choanoflagellates and some individual species were correlated with primary and secondary biomass and production, indicating a response to gradients in potential food sources. This suggests that choanoflagellates are tightly coupled with their food sources and supports the contention that they may an important link between bacteria-sized particles and metazoan grazers.  相似文献   

18.
It is well known that the risk of predation affects prey decision making. However, few studies have been concerned with the cues used by prey to assess this risk. Prey animals may use indirect environmental cues to assess predation hazard since direct evaluation may be dangerous. I studied the assessment of predation risk, manipulated via environmental illumination level, and the trade-off between foraging and predation hazard avoidance in the nocturnal rodentPhyllotis darwini (Rodentia: Cricetidae). In experimental arenas I simulated dark and full moon nights (which in nature correlate with low and high predation risk, respectively) and measured the immediate responses of animals to flyovers of a raptor model. Second, varying illumination only, I evaluated patch use, food consumption, central place foraging, and nocturnal variation of body weight. During flyover experiments, animals showed significantly more evasive reactions under full moon illumination than in moonless conditions. In the patch use experiments, rodents significantly increased their giving-up density and decreased their total food consumption under moonlight. On dark nights, rodents normally fed in the food patch, but when illumination was high they became central place foragers in large proportion. Moreover, the body weight of individuals decreased proportionately more during bright nights. These results strongly suggest thatP. darwini uses the level of environmental illumination as a cue to the risk of being preyed upon and may sacrifice part of its energy return to avoid risky situations.  相似文献   

19.
The contribution of fecal pellets to the benthos of the southeastern shelf of the USA is investigated through an analytic model which considers pellet production by different stage groups of the genus Paracalanus. Model results indicate that the concentration and vertical flux of pellets is a function of producer size and consumer size and abundance. Nauplii and adults, respectively, produce daily on the average 50 and 13% of total pellet mass, yet contribute 4 and 63%, respectively, to the daily pellet flux. Most of the pellets produced are consumed or degraded in the water column, with only 0.2% of the average daily primary production reaching the seafloor (35 m) as fecal pellets. This contributes to an impoverished benthos, such as that found on the southeastern continental shelf.  相似文献   

20.
The copepod Paramacrochiron maximum was found in high numbers (up to 5,675 copepods/medusa) on the oral arms of the scyphozoan Catostylus mosaicus. This association was considered to be commensalism for the following reasons: P. maximum (Lichomolgidae) was abundant on the medusae (approximately 805 copepods/kg of medusae) and very rare in the water column (approximately 5.99×10-4 copepods/kg of water); copepodites and adults of the symbiont were present on the host; the copepods were on the medusae both day and night, at different times (nine occasions between March 1999 and May 2000) and different locations (Botany Bay and Lake Illawarra, NSW, Australia). Over 40 taxa of plankton were found on the oral arms of C. mosaicus (including protists, cnidarians, polychaetes, molluscs, a wide range of holoplanktonic and meroplanktonic crustaceans, chaetognaths and fish eggs). These taxa were abundant in the water column and we concluded that they were prey. Symbiotic amphipods and carangid fishes were found with medusae. We conclude that there is a symbiotic association between P. maximum and C. mosaicus and care should be taken not to confound these copepods with the prey of C. mosaicus. Poecilostomid copepods are well known for consuming mucus and feeding is likely to be a major reason for the association.Communicated by G.F. Humphrey, Sydney  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号