首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of the upper ocean to the parameterization of the roughness length z 0 on the air side of the air-sea interface is studied using a one-dimensional mixed-layer model. In particular, it is shown that in the free convection limit when both the wind speed and the friction velocity approach zero, the familiar Charnock formula for the momentum roughness, which relies solely on wind generation, can be modified to account for contributions arising from the thermally generated turbulence. Therefore, a new parameterization is proposed for the momentum roughness length which extends the Charnock formula down to zero friction velocity. The value of a parameter which enters in the new formulation is determined by making use of exsisting free convection surface flux parameterizations. The effect of the new parameterization on the model performance is tested using data from the ocean weathership station Papa (OWS P), and data from the Long-Term Upper-Ocean Study (LOTUS) experiment. Simulations were carried out using a recently developed one-dimensional, second-order, turbulence closure scheme over diurnal as well as seasonal time scales. The findings suggest that the new momentum roughness parameterization improves the overall agreement between the observed and simulated sea-surface temperature (SST).  相似文献   

2.
The roughness length at the air-sea interface during free convection (z0fc) is mainly related to the convective velocity (w*) rather than the friction velocity (u*). The parameterization of z0fc with w * 2 /g as proposed by Abdella and DAlessio in 2003 is evaluated. It is shown that their proposed formula is consistent with field measurements. In order to avoid self-correlation by using u*, a new parameterization of w* with wind speed (Uz) at height z and stability parameter (z/L, where L is the buoyancy length) is proposed. This new formula for w* is in agreement with an independent field result.  相似文献   

3.
The numerical time-dependent three-dimensional model [Kovalets, I.V. and Maderich, V.S.: 2001, Int. J. Fluid Mech. Res. 30, 410–429] of the heavy gas dispersion in the atmospheric boundary layer has been improved by parameterizing momentum and heat fluxes on the surface of Earth using Monin–Obukhov similarity theory. Three parameterizations of heat exchange with the surface of Earth were considered: (A) formula of Yaglom A.M. and Kader B.A. [1974, J. Fluid Mech. 62, 601–623] for forced convection, (B) interpolation formula for mixed convection and (C) similarity relationship for mixed convection [Kader, B.A. and Yaglom, A.M.: 1990, J. Fluid Mech. 212, 637–662]. Two case studies were considered. In the first study based on experiment of Zhu et al., J. Hazard Mater 62, 161–186], the interaction of an isothermal heavy gas plume with an atmospheric surface layer was simulated. It was found that stable stratification in the cloud essentially suppresses the turbulence in the plume, reducing the turbulent momentum flux by a factor of down to 1/5 in comparison with the undisturbed value. This reduction essentially influences velocities in the atmospheric boundary layer above the cloud, increasing the mean velocity by a factor of up to 1.3 in comparison with the undisturbed value. A simulation of cold heavy gas dispersion was carried out in the second case based on field experiment BURRO 8. It was shown that both forced and free convections under moderate wind speeds significantly influence the plume. The relative rms and bias errors of prediction the plume’s height were σH ≈ 30% and ɛH = − 10%, respectively, for parameterization B, while for A and C the errors were σH ≈ 80% and ɛH ≈ − 65%. It is therefore advised to use the simple parameterization B in dense gas dispersion models.  相似文献   

4.
Flows in a compound open-channel (two-stage geometry with a main channel and adjacent floodplains) with a longitudinal transition in roughness over the floodplains are experimentally investigated in an 18 m long and 3 m wide flume. Transitions from submerged dense vegetation (meadow) to emergent rigid vegetation (wood) and vice versa are modelled using plastic grass and vertical wooden cylinders. For a given roughness transition, the upstream discharge distribution between main channel and floodplain (called subsections) is also varied, keeping the total flow rate constant. The flows with a roughness transition are compared to flows with a uniformly distributed roughness over the whole length of the flume. Besides the influence of the downstream boundary condition, the longitudinal profiles of water depth are controlled by the upstream discharge distribution. The latter also strongly influences the magnitude of the lateral net mass exchanges between subsections, especially upstream from the roughness transition. Irrespective of flow conditions, the inflection point in the mean velocity profile across the mixing layer is always observed at the interface between subsections. The longitudinal velocity at the main channel/floodplain interface, denoted \(U_{int}\), appeared to be a key parameter for characterising the flows. First, the mean velocity profiles across the mixing layer, normalised using \(U_{int}\), are superimposed irrespective of downstream position, flow depth, floodplain roughness type and lateral mass transfers. However, the profiles of turbulence quantities do not coincide, indicating that the flows are not fully self-similar and that the eddy viscosity assumption is not valid in this case. Second, the depth-averaged turbulent intensities and Reynolds stresses, when scaled by the depth-averaged velocity \(U_{d,int}\) exhibit two plateau values, each related to a roughness type, meadow or wood. Lastly, the same results hold when scaling by \(U_{d,int}\) the depth-averaged lateral flux of momentum due to secondary currents. Turbulence production and magnitude of secondary currents are increased by the presence of emergent rigid elements over the floodplains. The autocorrelation functions show that the length of the coherent structures scales with the mixing layer width for all flow cases. It is suggested that coherent structures tend to a state where the magnitude of velocity fluctuations (of both horizontal vortices and secondary currents) and the spatial extension of the structures are in equilibrium.  相似文献   

5.
Experimental investigation of bubbly flow and turbulence in hydraulic jumps   总被引:1,自引:1,他引:0  
Many environmental problems are linked to multiphase flows encompassing ecological issues, chemical processes and mixing or diffusion, with applications in different engineering fields. The transition from a supercritical flow to a subcritical motion constitutes a hydraulic jump. This flow regime is characterised by strong interactions between turbulence, free surface and air–water mixing. Although a hydraulic jump contributes to some dissipation of the flow kinetic energy, it is also associated with increases of turbulent shear stresses and the development of turbulent eddies with implications in terms of scour, erosion and sediment transport. Despite a number of experimental, theoretical and numerical studies, there is a lack of knowledge concerning the physical mechanisms involved in the diffusion and air–water mixing processes within hydraulic jumps, as well as on the interaction between the free-surface and turbulence. New experimental investigations were undertaken in hydraulic jumps with Froude numbers up to Fr = 8.3. Two-phase flow measurements were performed with phase-detection conductivity probes. Basic results related to the distributions of void fraction, bubble frequency and mean bubble chord length are presented. New developments are discussed for the interfacial bubble velocities and their fluctuations, characterizing the turbulence level and integral time scales of turbulence representing a “lifetime” of the longitudinal bubbly flow structures. The analyses show good agreement with previous studies in terms of the vertical profiles of void fraction, bubble frequency and mean bubble chord length. The dimensionless distributions of interfacial velocities compared favourably with wall-jet equations. Measurements showed high turbulence levels. Turbulence time scales were found to be dependent on the distance downstream of the toe as well as on the distance to the bottom showing the importance of the lower (channel bed) and upper (free surface) boundary conditions on the turbulence structure.  相似文献   

6.
The Structure of the Shear Layer in Flows over Rigid and Flexible Canopies   总被引:1,自引:0,他引:1  
Flume experiments were conducted with rigid and flexible model vegetation to study the structure of coherent vortices (a manifestation of the Kelvin–Helmholtz instability) and vertical transport in shallow vegetated shear flows. The vortex street in a vegetated shear layer creates a pronounced oscillation in the velocity profile, with the velocity near the top of a model canopy varying by a factor of three during vortex passage. In turn, this velocity oscillation drives the coherent waving of flexible canopies. Relative to flows over rigid vegetation, the oscillation in canopy geometry has the effect of decreasing the amount of turbulent vertical momentum transport in the shear layer. Using a waving plant to determine phase in the vortex cycle, each vortex is shown to consist of a strong sweep at its front (during which the canopy is most deflected), followed by a weak ejection at its rear (when the canopy height is at a maximum). Whereas in unobstructed mixing layers the vortices span the entire layer, they encompass only 70% of the flexibly obstructed shear layer studied here.  相似文献   

7.
A generic In Situ Mixing Height Growth (IMG) model, capable of predicting the real-time growth of the mixed layer and its diurnal evolution from routinely observed simple surface meteorological is developed. The algorithm for the determination of temporally growing daytime mixing height includes both convective and mechanical turbulence contributions. It accounts for neutral as well as height varying potential temperature gradients above the mixed layer. For thermally stable and mechanically dominated unstable night time Atmospheric Boundary Layer (ABL) the module uses similarity formulae based on the wind velocity [1]), the Monin—Obukhov length [2], and the Coriolis parameter. In the convective case simple slab model is integrated, based on initial lapse rate and the surface heat flux. The lapse rate is evaluated on the basis of vertical atmospheric stability, surface type and surface temperature. This differentiates the IMG model from other existing mixing height models that need initial measured lapse rate for calculation. IMG model is site specific as it calculates the radiative incoming heat flux depending on the solar declination estimates based on-site latitude and longitude. The IMG model is applied to calculate mixing height for India by using surface data (viz. wind speed, surface temperature, surface type) from 152 surface meteorological stations. Results have been evaluated with radiosonde mixing height data procured from 18 upper air stations. Sensitivity analysis of the model with respect to various parameters is performed. The model is formulated after reviewing presently available radiosonde mixing height data in India and can satisfactorily provide an alternative means of estimating mixing height for air pollution dispersion models.  相似文献   

8.
Dynamics of the surface layer in different liquids is examined by means of infrared thermography of the surface and simultaneous velocity fields measurements using surface and infrared Particle Image Velocimetry. This technique allows measurements and comparison of two velocity fields—at the surface and at small depth about 50–200 μm. In distilled water the velocity fields at the surface and at small depth exhibit significant dissimilarity. The flow field below the surface is essentially 3D, whereas the surface flow is characterized by vanishing 2D divergence of velocity, indicating predominantly planar motion. In contrast, in ethanol–butanol mixture two velocity fields are well correlated, both corresponding to 3D flow with continuous surface renewal. Thermal patterns, observed at the surface, and the flow field structure in different liquids are associated with different boundary conditions for velocity at the surface. Water surface is seldom renewed, which inhibits heat and mass exchange between the liquid and atmosphere. However, absence of vertical advection also enables organisms to live within the surface layer, to stand and walk on the free surface. This is illustrated by the difficulties a water strider faces on the surface of ultrapure water, which exhibits Marangoni convection.  相似文献   

9.
A simulation tool has been developed to model the wind fields, turbulence fields, and the dispersion of Chemical, Biological, Radiological and Nuclear (CBRN) substances in urban areas on the building to city blocks scale. A Computational Fluid Dynamics (CFD) approach has been taken that naturally accounts for critical flow and dispersion processes in urban areas, such as channeling, lofting, vertical mixing and turbulence, by solving the steady-state, Reynolds-Averaged Navier–Stokes (RANS) equations. Rapid generation of high quality cityscape volume meshes is attained by a unique voxel-based model generator that directly interfaces with common Geographic Information Systems (GIS) file formats. The flow and turbulence fields are obtained by solving the steady-state RANS equations using a collocated, pressure-based approach formulated for unstructured and polyhedral mesh elements. Turbulence modeling is based upon the Renormalization Group variant of the k–ε model (k–ε RNG). Neutrally buoyant simulations are made by prescribing velocity boundary condition profiles found by a power–law relationship, while turbulence quantities boundary conditions are defined by a prescribed mixing length in conjunction with the assumption of turbulence equilibrium. Dispersion fields are computed by solving an unsteady transport equation of a dilute gas, formulated in a Eulerian framework, using the velocity and turbulence fields found from the steady-state RANS solution. In this paper the model is explained and detailed comparisons of predicted to experimentally obtained velocity, turbulence and dispersion fields are made to neutrally stable wind tunnel and hydraulic flume experiments.  相似文献   

10.
The stability, mixing and effect of downstream control on axisymmetric turbulent buoyant jets discharging vertically into shallow stagnant water is studied using 3D Reynolds-averaged Navier–Stokes equations (RANS) combined with a buoyancy-extended k –ε model. The steady axisymmetric turbulent flow, temperature (or tracer concentration) and turbulence fields are computed using the finite volume method on a high resolution grid. The numerical predictions demonstrate two generic flow patterns for different turbulent heated jet discharges and environmental parameters (i) a stable buoyant discharge with the mixed fluid leaving the vertical jet region in a surface warm water layer; and (ii) an unstable buoyant discharge with flow recirculation and re-entrainment of heated water. A stratified counterflow region always appears in the far-field for both stable and unstable buoyant discharges. Provided that the domain radius L exceeds about 6H, the near field interaction and hence discharge stability is governed chiefly by the jet momentum length scale to depth ratio lM/H, regardless of downstream control. The near field jet stability criterion is determined to be lM/H = 3.5. A radial internal hydraulic jump always exists beyond the surface impingement region, with a 3- to 6-fold increase in dilution across the jump compared with vertical buoyant jet mixing. The predicted stability category, velocity and temperature/concentration fields are well-supported by experiments of all previous investigators.  相似文献   

11.
This paper investigates the effects of vertical eddy diffusivities derived from the 3 different planetary boundary layer (PBL) schemes on predictions of chemical components in the troposphere of East Asia. Three PBL schemes were incorporated into a regional air quality model (RAQM) to represent vertical mixing process and sensitivity simulations were conducted with the three schemes while other options are identical. At altitudes <2km, all schemes exhibit similar skill for predicting SO2 and O3, but more difference in the predicted NOx concentration. The Gayno–Seaman scheme produces the smallest vertical eddy diffusivity (Kz) among all schemes, leading to higher SO2 and NOx concentrations near the surface than that from the other 2 schemes. However, the effect of vertical mixing on O3 concentration is complex and varies spatially due to chemistry. The Gayno–Seaman scheme predicts lower O3 concentrations than the other two schemes in the parts of northern China (generally VOC-limited) and higher ones in most parts of southern China (NOx-limited). The Byun and Dennis scheme produces the largest mixing depth in the daytime, which bring more NOx into upper levels, and the mixing depth predicted by the Gayno–Seaman scheme is the smallest, leading to higher NOx and lower O3 concentrations near the surface over intensive emission regions.  相似文献   

12.
A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier–Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052–2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349–377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369–398)’s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243–258)’s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.  相似文献   

13.
Laminarization of flow in a two-dimensional dense gas plume was experimentally investigated in this study. The plume was created by releasing CO2 through a ground-level line source into a simulated turbulent boundary layer over an aerodynamically rough surface in a meteorological wind tunnel. The bulk Richardson number (Ri*), based on negative plume buoyancy, plume thickness, and friction velocity, was varied over a wide range so that the effects of stable stratification on plume laminarization could be observed. A variety of ambient wind speeds as well as three different sizes of roughness arrays were used so that possible effects of roughness Reynolds number (Re*) on plume laminarization could also be identified. Both flow visualization methods and quantitative measurements of velocity and intermittency of turbulence were used to provide quantitative assessments of plume laminarization.Flow visualization provided an overall picture of how the plume was affected by the negative buoyancy. With increasing Ri*, both the plume depth and the vertical mixing were significantly suppressed, while upstream propagation of the plume from the source was enhanced. The most important feature of the flow revealed by visualization was the laminarization of flow in the lower part of the plume, which appeared to be closely related to both Ri* and Re*.Measurements within the simulated dense gas plumes revealed the influence of the stable stratification on mean velocity and turbulence intensity profiles. Both the mean velocity and turbulence intensity were significantly reduced near the surface; and these reductions systematically depended on Ri*. The roughness Reynolds number also had considerable influence on the mean flow and turbulence structure of the dense gas plumes.An intermittency analysis technique was developed and applied to the digitized instantaneous velocity signals. It not only confirmed the general flow picture within the dense plume indicated by the flow visualization, but also clearly demonstrated the changes of flow regime with variations in Ri* and Re*. Most importantly, based on this intermittency analysis, simple criteria for characterizing different flow regimes are formulated; these may be useful in predicting when plume laminarization might occur.  相似文献   

14.
Past research has shown that the most important areas for active sand movement in the northern part of the Chihuahuan Desert are mesquite-dominated desert ecosystems possessing sandy soil texture. The most active sand movement in the mesquite-dominated ecosystems has been shown to take place on elongated bare soil patches referred to as “streets”. Aerodynamic properties of mesquite streets eroded by wind should be included in explaining how mesquite streets are more emissive sand sources than surrounding desert land. To understand the effects of wind properties, we measured them at two flat mesquite sites having highly similar soil textures but very different configurations of mesquite. The differences in wind properties at the two sites were caused by differences of size, orientation, and porosity of the mesquite, along with the presence of mesquite coppice dunes (sand dunes stabilized by mesquites growing in the dune and on its surface) found only at one of the two sites. Wind direction, u* (friction velocity), z0 (aerodynamic roughness height) and D (zero plane displacement height) were estimated for 15-m tower and 3-m mast data. These aerodynamic data allowed us to distinguish five categories with differing potentials for sediment transport. Sediment transport for the five categories varied from unrestricted, free transport to virtually no transport caused by vegetation protection from wind forces. In addition, “steering” of winds below the level of the tops of mesquite bushes and coppice dunes allowed longer parallel wind durations and increased wind erosion for streets that aligned roughly SW–NE. U.S. Government right to retain a non-exclusive royalty-free licence in and to any copyright is acknowledged.  相似文献   

15.
The diel vertical distribution patterns of Japanese common squid, Todarodes pacificus, paralarvae were examined using a Multiple Opening Closing Net and Environmental Sensing System (MOCNESS) in the southwest Sea of Japan near the Oki Islands (Japan) during five late-autumn surveys in 1998–2002. A total of 1,511 paralarvae ranging in mantle length (ML) from 0.7 to 7.3 mm were collected at 63 of the 68 stations surveyed. Most (84%) were collected above 75 m depth and in the mixed layer. The vertical distribution patterns varied little between day and night. Hatchling-sized (<1.0 mm ML) paralarvae were abundant at 0–25 m depth, and paralarval ML increased with increasing sampling depth. Our results suggest that T. pacificus paralarvae do not exhibit large diel vertical migration patterns, but as they increase in size, paralarvae gradually descend in the water column and the variability in depth increases with ontogeny.  相似文献   

16.
刘静  卓慕宁  胡耀国 《生态环境》2007,16(6):1829-1836
粗糙度是流体力学引进的一个重要参数,是现代地球表面各种物质流运动研究中不可或缺的一个重要概念。它在定床流动中曾获得巨大的成功,但在动床及所谓零位移较大的粗糙面上,表现出其局限性。文章在系统阐述了空气动力学意义上粗糙度概念的由来及其物理意义;在总结某些学科领域中粗糙度的应用成果基础上,发现对于定床,地表粗糙具有地表阻力系数特性,它比地表物体群落平均高度小一个量级;而对于动床,粗糙度则更具有阻力系数的特性,它与超出临界摩阻之值成正比;至于植被地表的粗糙度则近似于定床,但它要从零平面位移高度算起。因此,地表粗糙度概念的进一步完善应从地表阻力系数和实验研究入手,并加强自然界和室内实验室的观测和实验以获得相应系数的变化规律,最终解决粗糙度本身和流体力学相关的理论和实践问题。  相似文献   

17.
Turbulence characteristics within sparse and dense canopies   总被引:2,自引:0,他引:2  
Boundary layer interactions with canopies control various environmental processes. In the case of dense and homogeneous canopies, the so-called mixing layer analogy is most generally used. When the canopy becomes sparser, a transition occurs between the mixing layer and the boundary layer perturbed by interactions between element wakes. This transition has still to be fully understood and characterized. The experimental work presented here deals with the effect of the canopy density on the flow turbulence and involves an artificial canopy placed in a fully developed turbulent boundary layer. One and two-component velocity measurements are performed, both within and above the canopy. The influence of the spacing between canopy elements is studied. Longitudinal velocity statistical moments and Reynolds stresses are calculated and compared to literature data. For spacings greater than the canopy height, evidences of this transition are found in the evolution of the skewness factor, shear length scale and mixing length.  相似文献   

18.
Hydraulic dredging targeting the bivalve Chamelea gallina in the northern and central Adriatic Sea has been taking place for over 30 years. In the period 2000–2001, 73 commercial dredgers harvested the resource within the sandy coastal area of the Ancona Maritime District (central Adriatic Sea). Despite this, no study aimed at investigating the impact of the fishery on the macrobenthic community of the area has ever been carried out. Sampling was done at 6 monthly intervals in an attempt to relate the impact of hydraulic dredging to different levels of fishing intensity. Data regarding two depth strata (4–6; 7–10 m) were analysed separately by means of permutational multivariate analysis of variance. The results revealed an overall condition of moderate disturbance within the benthic community, especially so within the 4–6 m depth stratum. The response of the benthic community to varying intensities of fishing activity was rapid, occurring within 6 months. Differences in the response of benthic community to differing intensities of fishing activity were found between the two depth strata considered. Significant differences in multivariate location of the benthic community were revealed between the three disturbance levels in both depth strata. Differences in multivariate dispersion were detected above a threshold level of fishing intensity, only within the shallow community. Differences were found between depth strata relating to species diversity and evenness, with significant differences between levels of fishing intensity being evident only within the 4–6 m depth stratum. The results emphasised that, even in a benthic community that is typical of a moderately disturbed environment, the effects of fishing on community structure were still discernible over and above the natural variation.  相似文献   

19.
The vertical distribution of the phytoplankton community in association with water column stability was examined for 1 year in an inshore area of the Southern Aegean Sea. An analysis of variance model (split-plot design) was applied to evaluate the variations in the vertical profile of diatoms, flagellates and coccolithophores. When either weak stratification or mixing conditions prevailed, diatoms in general were uniformly distributed throughout the water column while flagellates and coccolithophores appeared occasionally stratified. During the strong stratification period, all taxa demonstrated significant variations in abundance between depths in most cases. However, none of these taxa was confined to a single depth stratum during either the water mixing or the stratification period, but were all present at all depths during all seasons. The results demonstrate clearly that the parameter taxon is an important component in ecological observations on the vertical distribution of phytoplankton.  相似文献   

20.
The results presented in this report are based on analyses of 16,721 days of data downloaded from 96 archival tags recovered from bigeye tuna (Thunnus obesus; 54–159 cm in length, 0.97–5.44 years of age) at liberty from 31 to 1,508 days in the equatorial eastern Pacific Ocean. Analyses of daily timed depth and temperature records resulted in the classification of the data into three daily behavior types: characteristic, associative (associated with floating objects), and other. There is a significant positive correlation between the proportion of time fish exhibit characteristic behavior and increasing length, and significant negative correlations between the proportion of time bigeye exhibit associative and other behavior with increasing length. For the smallest (54–80 cm) to largest (100–159 cm) length classes, the vertical habitats utilized when exhibiting non-associative behaviors were 99 and 98% of the time above the thermocline depth (60 m) during the night, at the same average depth of 34 m, and 60 and 72% of the time below the thermocline during the day at average depths of 163 and 183 m, respectively. For the same smallest to largest length classes, when exhibiting associative behavior, the average nighttime and daytime depths were 25 and 21, and 33 and 37 m, respectively. The apparent effects of the environment on the behavior of the fish are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号