首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
在考虑我国移动源主要大气污染物排放标准变化的基础上,分别对我国2000—2012年道路移动源和非道路移动源主要大气污染物(CO、NOx、HC、PM2.5)的排放量进行了估算。研究表明:2000—2012年间,我国移动源主要大气污染物排放总量呈现先增后减的趋势,2005年达到最大值,为4 233万t,其中道路移动源的排放量占80%以上;各类大气污染物的排放量的差异性较大,CO和NOx的排放量较多,占排放总量的87%以上,从整体趋势上来看,CO的排放量逐年较少,NOx的排放量逐年增大,而HC和PM2.5变化不大;摩托车和重型柴油货车是道路移动源主要排放源,农业机械是非道路移动源的主要排放源;移动源排放的主要大气污染物在地区间的分布极不平衡,2012年排放量最高的5个省份依次是山东、河北、河南、广东和江苏;排放强度较大的地区主要集中在环渤海经济圈、长三角地区和珠三角地区,其中又以上海、北京、天津3个直辖市的排放强度最大。  相似文献   

2.
氮氧化物(NOx)废气的排放来自固定源(包括各种燃烧装置)和移动源(内燃机车)两个方面。据美国环境保护局(EPA)估计。99%NOx是从燃料燃烧排放的,其中固定源与移动源各占一半。予期到1985年由于燃煤要增加,因此,固定源与移动源所占比例,将成为70%与30%之比。  相似文献   

3.
以2015年为基准年,利用COPERT 4模型计算了杭州市分车型分排放标准下的机动车排气污染物(CO、碳氢化合物(HC)、NO_x、PM_(2.5))的排放因子,并估算了各污染物排放量及分车型分排放标准下的各污染物分担率。结果表明,随着排放标准的提升,机动车排气污染物排放因子总体呈现下降的趋势。汽油车的CO和HC排放因子高于柴油车,而柴油车的NO_x和PM_(2.5)排放因子高于汽油车;天然气车的各污染物排放因子基本接近汽油车,而汽油电混动车的各污染物排放因子则明显低于其他动力车;各污染物排放因子随车型的增大(重)而增大。2015年杭州市机动车排气污染物CO、NO_x、HC和PM_(2.5)排放量分别为48 923.0、44 713.7、7 014.7、837.9t,其中汽油车CO和HC分担率较高主要是因为小型汽油客车CO和HC分担率高,并且其保有量占比也高,应重点控制小型汽油客车的保有量;柴油车NOx和PM_(2.5)分担率较高主要是因为重型柴油货车NO_x和PM_(2.5)分担率高,但其保有量占比不高,应重点控制重型柴油货车的排放因子。  相似文献   

4.
建立了2015年乌昌石区域化石燃料固定燃烧点源大气污染物(NO_x、SO_2、PM_(2.5)和PM_(10))的排放清单,并对污染物的时空分布特征进行了分析。结果表明,2015年乌昌石区域化石燃料固定燃烧点源NO_x、SO_2、PM_(2.5)和PM_(10)的年排放量分别为2.10×10~5、1.52×10~5、4.28×10~4、8.35×10~4 t。从行业上来看,电力生产与供应行业对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为70.78%、66.56%、51.10%、49.98%;从化石燃料上来看,煤炭对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为95.63%、99.84%、99.70%、99.84%;从锅炉类型上来看,煤粉炉对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为84.20%、85.09%、83.43%、84.06%。固定燃烧点源污染物排放呈现出明显的时间变化特征,采暖季污染物排放量明显高于非采暖季,一天中白天的污染物排放量高于夜晚。空间分布显示,大气污染物的排放源主要集中在乌鲁木齐市、五家渠市和昌吉市。  相似文献   

5.
以68台燃油锅炉(≤10~MW)NOx排放实测数据为基础,通过统计分析方法,研究了NOx的排放特征;通过对比分析,探讨了我国燃油锅炉NOx排放控制与管理现状,讨论了进一步加强我国燃油锅炉NOx排放管理控制的可能性与可行性,并提出了相应的管理控制建议。结果表明,NOx平均排放浓度为318.2mg/m^3,基于燃料消耗量的平均排放因子为4.4kg/t,基于燃料发热量的平均排放因子为102.8ng/J,基于燃料氮含量的平均排放因子为2.1mg/mg;建议采取分阶段控制的方式,逐步提高NOx排放限制,从而实现控源减排目标。  相似文献   

6.
在武汉市工业区和交通区展开了PM_(2.5)样品采集,研究了PM_(2.5)中二元羧酸的化学组成、污染水平及来源。二元羧酸在工业区为103.1~2 219.2ng/m~3,年平均值为958.4ng/m~3;在交通区为66.9~2 176.8ng/m~3,年平均值为749.7ng/m~3。丙二酸/丁二酸(C_3/C_4,质量比,下同)表明,武汉市二元羧酸主要来自机动车尾气排放;己二酸/壬二酸(C_6/C_9)表明,二元羧酸的人为源贡献大于自然源。正定矩阵因子分解(PMF)模型解析结果显示,工业区中二次源占13.7%,建筑扬尘占23.1%,机动车尾气排放占37.0%,生物质燃烧占26.2%;交通区中二次源占8.9%,建筑扬尘占24.9%,机动车尾气排放占51.8%,生物质燃烧占14.4%。潜在源区贡献因子(PSCF)分析得出,武汉市夏季二元羧酸主要受到南部季风的影响,冬季主要受到西部冷空气的影响。  相似文献   

7.
为更直观地展示机动车尾气污染物的空间分布和时变情况,采用COPERT模型计算排放因子,结合基础速度分配模型得到的分车型车速计算的排放速率,再结合格林希尔治速度—流量模型得到的分车型流量计算的污染物排放量,最后将各路段、各种污染物的机动车排放量在地图上渲染出来,即完成了机动车尾气动态排放清单的研制,以便于分析机动车污染物的排放规律。以广州内环为例,对内环路动态排放清单进行详细分析,结果表明:在早高峰时段有9个路段污染物排放量高于其他路段,而同一路段一天内污染物排放量的变化基本符合交通流的变化趋势,CO、挥发性有机物、NOx和PM2.5排放量两两之间线性相关性强。  相似文献   

8.
以86台中小型燃烟煤层燃炉(≤65 MW)的燃料特性分析数据和NOx排放实测数据为基础,通过统计分析方法,研究了锅炉出力、过量空气系数、燃煤挥发分、燃煤氮含量对NOx排放浓度的影响,分析了我国中小型燃烟煤层燃炉NOx的排放与管理控制现状。结果表明,中小型燃用烟煤层燃炉NOx平均排放浓度为324.6 mg/m3;锅炉出力对NOx排放浓度不具有显著影响;燃煤挥发分增高,NOx排放浓度降低;过量空气系数和燃煤氮含量增大,NOx排放浓度增高;并建议在国家层面上尽快制订燃煤锅炉NOx排放标准限值。  相似文献   

9.
以86台中小型燃烟煤层燃炉(≤65 MW)的燃料特性分析数据和NOx排放实测数据为基础,通过统计分析方法,研究了锅炉出力、过量空气系数、燃煤挥发分、燃煤氮含量对NOx排放浓度的影响,分析了我国中小型燃烟煤层燃炉NOx的排放与管理控制现状。结果表明,中小型燃用烟煤层燃炉NOx平均排放浓度为324.6 mg/m^3;锅炉出力对NOx排放浓度不具有显著影响;燃煤挥发分增高,NOx排放浓度降低;过量空气系数和燃煤氮含量增大,NOx排放浓度增高;并建议在国家层面上尽快制订燃煤锅炉NOx排放标准限值。  相似文献   

10.
利用本地化修正的MOVES模型模拟确定了关中地区不同类型车辆的颗粒物排放因子,结合实地调研的保有量和行驶里程数据测算了该地区的机动车颗粒物年排放总量并从季节、城市、车型和燃油等多个角度详细分析了颗粒物的排放分担率。结果表明:关中地区2012年的机动车颗粒物排放总量分别为PM_(2.5)4.06×1O~3 t,PM_(10)5.52×10_3 t;关中五市一区中西安市的颗粒物排放量最高PM_(2.5)和PM_(10)。排放分別占到该地区的46.53%和48.39%;不同类型车辆中重型货车的排放分担率最高其次为中型货车二者之和占到颗粒物总排放的50%以上;不同燃油车辆中,柴油车的排放分担率远远高于汽油车,是颗粒物的主要贡献者;因此中型和重型柴油货车是关中地区控制颗粒物排放污染的重点车型。  相似文献   

11.
以68台燃油锅炉(≤10.5 MW)NO_x排放实测数据为基础,通过统计分析方法,研究了NO_x的排放特征;通过对比分析,探讨了我国燃油锅炉NO_x排放控制与管理现状,讨论了进一步加强我国燃油锅炉NO_x排放管理控制的可能性与可行性,并提出了相应的管理控制建议。结果表明,NO_x平均排放浓度为318.2 mg/m~3,基于燃料消耗量的平均排放因子为4.4 kg/t,基于燃料发热量的平均排放因子为102.8 ng/J,基于燃料氮含量的平均排放因子为2.1 mg/mg;建议采取分阶段控制的方式,逐步提高NO_x排放限制,从而实现控源减排目标。  相似文献   

12.
Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations.  相似文献   

13.
A grid-based, bottom-up method has been proposed by combining a vehicle emission model and a travel demand model to develop a high-resolution vehicular emission inventory for Chinese cities. Beijing is used as a case study in which the focus is on fuel consumption and emissions from hot-stabilized activities of light-duty gasoline vehicles (LGVs) in 2005. The total quantity of emissions, emission intensity, and spatial distribution of emissions at 1- by 1-km resolution are presented and compared with results from other inventory methods commonly used in China. The results show that the total daily fuel consumption and vehicular emissions of carbon dioxide, carbon monoxide, hydrocarbons, and oxides of nitrogen from LGVs in the Beijing urban area in 2005 were 1.95 x 10(7) L, 4.28 x 10(4) t, 1.97 x 10(3) t, 0.28 x 10(3) t, and 0.14 x 10(3) t, respectively. Vehicular fuel consumption and emissions show spatial variations that are consistent with the traffic characteristics. The grid-based inventory developed in this study reflects the influence of traffic conditions on vehicle emissions at the microscale and may be applied to evaluate the effectiveness of traffic-related measures on emission control in China.  相似文献   

14.
燃油锅炉燃烧过程SO2的生成与排放特征   总被引:1,自引:0,他引:1  
燃料燃烧过程是大气污染物的重要来源之一,对人体健康、空气质量和气候变化产生非常重要的影响。以62台燃油锅炉(≤10.5 MW)的燃料特性分析数据和SO2排放实测数据为基础,通过统计分析方法,研究了燃油燃烧过程中燃油硫含量S和过量空气系数α对硫的转化率、SO2排放因子和排放浓度的影响,获得了基于燃料消耗量、燃料发热量的SO2排放因子EFCEFH以及SO2标态折算浓度CSO2与硫含量S间的关联式。结果表明,在过量空气系数α>1的燃油燃烧过程中,EFCEFHCSO2与燃油硫含量S呈现出显著的线性正相关性,而与过量空气系数α无关,其关系式分别为:EFC=18.86602×SEFH=443.78751×SCSO2=1 509.28337×S;硫转化率η和基于燃料硫含量的SO2排放因子EFS则与燃油硫含量S和过量空气系数α无关,其平均值分别为96.3%和1.93 kg/kg。  相似文献   

15.
The purpose of this investigation was to quantify the potential of natural gas to reduce emissions from stationary combustion sources by analyzing the case study of the metropolitan region of Santiago, Chile. For such purposes, referential base scenarios have been defined that represent with and without natural gas settings. The method to be applied is an emission estimate based on emission factors. The results for this case study reveal that stationary combustion sources that replaced their fuel reduced particulate matter (PM) emissions by 61%, sulfur oxides (SOx) by 91%, nitrogen oxides (NOx) by 40%, and volatile organic compounds (VOC) by 10%. Carbon monoxide (CO) emissions were reduced by 1%. As a result of this emission reduction, in addition to reductions caused by other factors, such as a shift to cleaner fuels other than natural gas, technological improvements, and sources which are not operative, emission reduction goals set forth by the environmental authorities were broadly exceeded.  相似文献   

16.
Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

17.
Abstract

The purpose of this investigation was to quantify the potential of natural gas to reduce emissions from stationary combustion sources by analyzing the case study of the metropolitan region of Santiago, Chile. For such purposes, referential base scenarios have been defined that represent with and without natural gas settings. The method to be applied is an emission estimate based on emission factors. The results for this case study reveal that stationary combustion sources that replaced their fuel reduced particulate matter (PM) emissions by 61%, sulfur oxides (SOx) by 91%, nitrogen oxides (NOx) by 40%, and volatile organic compounds (VOC) by 10%. Carbon mon-oxide (CO) emissions were reduced by 1%. As a result of this emission reduction, in addition to reductions caused by other factors, such as a shift to cleaner fuels other than natural gas, technological improvements, and sources which are not operative, emission reduction goals set forth by the environmental authorities were broadly exceeded.  相似文献   

18.
To improve the accuracy and applicability of vehicular emission models, this study proposes a speed and vehicle-specific power (VSP) modeling method to estimate vehicular emissions and fuel consumption using data gathered by a portable emissions monitoring system (PEMS). The PEMS data were categorized into discrete speed-VSP bins on the basis of the characteristics of vehicle driving conditions and emissions in Chinese cities. Speed-VSP modal average rates of emissions (or fuel consumption) and the time spent in the corresponding speed-VSP bins were then used to calculate the total trip emissions (or fuel consumption) and emission factors (or fuel economy) under specific average link speeds. The model approach was validated by comparing it against measured data with prediction errors within 20% for trip emissions and link-speed-based emission factors. This analysis is based on the data of light-duty gasoline vehicles in China; however, this research approach could be generalized to other vehicle fleets in other countries. This modeling method could also be coupled with traffic demand models to establish high-resolution emissions inventories and evaluate the impacts of traffic-related emission control measures.  相似文献   

19.
Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号