首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Second Songhua River was subjected to a large amount of raw or primary effluent from chemical industries in Jilin city in 1960s to 1970s, resulting in serious mercury pollution. However, an understanding of other trace metal pollution has remained unclear. The objective of this study was to investigate trace metal contamination in the sediment of the river. Bottom sediment samples were taken in the river between Jilin city and Haerbin city in 2005. An uncontaminated sediment profile was taken in the Nen River at the same time. Total concentrations of Al, Fe, Mg, Ca, K, Na, Ti, Mn, V, Sc, Co, Cu, Cr, Ni, Pb and Zn in the sediment samples were measured by ICP-MS or ICP-OES, following digestion with various acids. Concentrations of Co, Cu, Cr, Ni, Pb and Zn in the surface sediments were 5.1–14.7, 18.5–78.9, 2.4–75.4, 7.2–29.0, 13.5–124.4, and 21.8–403.1 mg/kg, respectively, generally decreasing along the course of the river from Jilin city to Haerbin city. Background concentrations of trace metals were reconstructed by geochemical normalization to a conservative element scandium. Results showed that concentrations of Co, Cr, and Ni in the sediment were generally only slightly higher than or equal to their background values, while concentrations of Cu, Pb, and Zn in the some sediment samples were significantly higher than their background values. In detail, the sediment at Jilin city was moderately contaminated by Cu, and the sediment of the Second Songhua River was moderately contaminated by Pb and Zn. The top layer (0–10 cm depth) and bottom layers (30–46 cm depth) of one sediment profile at Wukeshu town were generally moderately polluted by Pb and Zn. Synthetically, the surface sediment in the studied river section was classified as natural sediment without ecological risk by the sediment pollution index (SPI) of Cu, Cr, Ni, Pb and Zn. Only the 30–45 cm depth of the sediment profile at Wukeshu town was classified as low polluted sediment by the SPI of these metals, recording a historical contamination of the river in the 1960s to 1970s. This buried contamination of trace metals might pose a potential risk to water column under disturbance of sediment. Foundation item: The National Basic Research Priorities Program of China (2004CB418502)  相似文献   

2.
Metal Pollution Assessment of Sediment and Water in the River Hindon, India   总被引:7,自引:0,他引:7  
The metal pollution in water and sediment of the River Hindon in western Uttar Pradesh (India) was assessed for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The metal concentrations in water showed wide temporal variation compared with bed sediment because of variability in water discharge and variations in suspended solid loadings. Metal concentrations in bed sediments provided a better evaluation of the degree and the extent of contamination in the aquatic environment, Santagarh and Atali being the most polluted sites of the river. The ratio of heavy metals to conservative elements (Fe, Al, etc.) may reveal the geochemical imbalances due to the elevated metal concentrations normally attributed to anthropogenic sources. Metal/Al ratios for the bed sediments of the river Hindon were used to determine the relative mobility and general trend of relative mobility occurred Fe > Mn > Zn > Cr > Ni > Pb > Cu > Cd.  相似文献   

3.
The main goal of this study is to determine the present heavy metal pollution state in the two gulfs of the Aegean Sea; Saros and Gökova Gulfs. The surface sediments were collected from 11 and eight locations in the Saros and Gökova during May 2001, respectively. The results showed that the sediments of Saros and Gökova gulfs were polluted with Pb, Cr, Zn, Mn, and Ni and Pb, Cr, Ni, and Mn, respectively. For various metals the contamination factor (CF) has been calculated to assess the degree of pollution in sediments. The sediments were noted to be not contaminated with Hg, Cd, and Cu in all areas. Moderate contaminations were observed for Pb, Cr, and Zn in Saros Gulf. The CF was moderate and very high for Ni in the Saros and the Gökova Gulf, respectively.  相似文献   

4.
Suspended particulate matter (SPM), sediments and clams were collected at three sites in Jiaozhou Bay to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 40.11–203; Zn: 118–447; Pb: 50.1–132; Cd: 0.55–4.39; Cr: 147.6–288; Mn: 762−1670 μg/g), sediments (Cu: 17.64–34.26; Zn: 80.79–110; Pb: 24.57–49.59; Cd: 0.099–0.324; Cr: 41.6–88.1; Mn: 343−520μg/g) and bivalves (Cu: 6.41–19.76; Zn: 35.5–85.5; Pb: 0.31–1.01; Cd: 0.51–0.67; Mn: 27.45−67.6 μg/g) are comparable to those reported for other moderately polluted world environments. SPM showed a less clear pattern. Metal concentrations in sediments displayed a clear geographical trend with values increasing with proximity to major urban centers. The clams (on dry weight) showed a complex pattern due to the variability introduced by age-related factors. Cd showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations. Zn, Pb and Mn showed no clear geographical pattern, whereas Cu increased in the clams collected in the most industrialized area. In addition, the bioaccumulation factors (BAF) were calculated. The result indicated that the studied Ruditapes philippinarum in Jiaozhou Bay possessed different bioaccumulation capacities for Cd, Zn, Cu, Pb and Mn, and Cd, Zn had a relatively high assimilation of those metals from sediment particles. A significant relationship with clam age was observed for Zn (positive) and Cu (negative) suggesting different physiological requirements for both metals with age. Trace metal concentrations measured in the tissue of the investigated clam were in the range considered safe by the WHO for human use.  相似文献   

5.
The extent of pollution with organotin compounds and Cd, Pb, Ni, Cu, Zn, Cr, Mn, V, Co and Al was investigated in sediments and mussels (Mytilus galloprovincialis) from the Slovenian costal area of the Northern Adriatic Sea. Sampling was performed in Marina Portorož, Dockyard Izola, non exposed area of the Bay of Mesečev zaliv and in Mariculture Sečovlje. Mussels were taken in the summer and winter time, while sediments were collected during the winter sampling. Organotin compounds were determined by gas chromatography—mass spectrometry and metals by flame or electrothermal atomic absorption spectrometry. The accuracies of the analytical procedures were checked by the analysis of standard reference materials CRM 477 mussel tissue and PACS 2 marine sediment (organotin compounds) and SRM 2976 mussel tissue and CRM 320 river sediment (metals). Good agreements between certified and determined values were obtained. Normalization procedure to Al was applied to estimate the anthropogenic inputs of metals in sediments. The analyses of sediments demonstrated moderate pollution with organotin compounds in Marina Portorož and in Dockyard Izola. Concentrations of tributyltin species were higher than those of dibutyltin and monobutyltin. In mussels substantial contamination with tributyltin was observed in Marina Porotrož and Dockyard Izola. The extent of pollution was higher in the winter time. The analysis of metals in sediments exhibited elevated concentrations in Marina Portorož and Dockyard Izola. Data from the normalization procedure indicated the anthropogenic inputs of Cu, Zn and Cr in Marina Portorož and Mn in Bay of Mesečev zaliv and Dockyard Izola. Mussels, as accumulators of pollutants, in general contained higher metal concentrations during winter time in Dockyard Izola.  相似文献   

6.
This study is carried out to evaluate potentially toxic metal concentrations (As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, and Zn) together with their spatial distribution, degree of pollution, and potential ecological risk in Kor river sediments (southwest Iran) using sediment quality guidelines, geoaccumulation index (I geo), Hakanson potential ecological risk index (RI), and standard methods of statistical analysis. The study area stretches some 140 km from the Drodzan Dam to Bakhtegan Lake, a stretch of river where different industrial and domestic activities (e.g., petrochemical complex, oil refinery, industrial meat processing complex, Marvdasht city sewage) and ecological value overlap with each other. Calculated geoaccumulation index indicate that 50 % of the stations are moderately to very extremely polluted. The potential ecological risk for nine investigated metals in Kor river is Hg (948)?>?Mo (51.9)?>?Ni (37.8)?>?Cd (29.8)?>?As (22)?>?Cu (16.6)?>?Pb (13.3)?>?Zn (3.3)?>?Cr (1). Results show that sediments in parts of Kor river sediments are heavily affected by effluents discharged from industrial plants and other parts are affected by agriculture and urban runoff from nearby lands. These phenomena may cause a risk of secondary water pollution under sediment disturbance and/or changes in the physical–chemical characteristics of the aquatic system.  相似文献   

7.
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.  相似文献   

8.
为了解渭河陕西段表层沉积物重金属的污染特征,采用ICP-MS分析了13个采样断面表层沉积物中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn 8种重金属的含量,并对其来源和生态风险进行了评价。结果表明:渭河陕西段8种重金属的平均含量顺序依次为Mn > Zn > Cr > Cu > Ni > Pb > As > Cd;除Ni外的其余7种重金属的平均含量均超过陕西省A层土壤背景值。各断面表层沉积物重金属的潜在生态风险指数(RI)介于111.4~7 043.7,其中23.1%的断面有极强生态风险,46.2%的断面为中等生态风险,其余为轻微生态风险。Cd污染最为严重,对各断面的潜在生态风险介于较强生态风险与极强生态风险之间,对RI的贡献平均为85.2%;其余7种重金属在所有断面均属于轻微生态危害。渭河陕西段表层沉积物As、Cd、Cu和Zn主要为工业与农业来源;Cr和Ni主要为自然来源;Pb和Mn与城市污水和交通污染来源有关。  相似文献   

9.
西南涌流域底泥重金属污染特征及潜在生态危害评价   总被引:2,自引:2,他引:0  
西南涌流域近年来受到比较严重的污染,为了解受重金属污染状况,对该流域底泥重金属污染水平与特征进行了调查与分析,并在此基础上采用地累积指数法和潜在生态危害指数法对西南涌流域底泥重金属污染程度与生态危害进行了评价。结果表明,西南涌流域底泥已不同程度受到重金属Cu、Zn、Pb、Cd、Cr的污染,与珠三角土壤背景值相比,西南涌流域底泥重金属Cu、Zn、Pb、Cd、Cr分别超标11.38、3.32、1.81、19.45、3.20倍;底泥中的Cu、Zn、Cr、Cd之间呈极显著正相关(r=0.615~0.964)。通过地累积指数法评价表明,西南涌流域底泥中的Cd为偏重污染,Cu、Zn为偏中度污染,Pb为轻度污染,Cr为无污染;潜在生态危害指数法评价结果表明,西南涌流域底泥重金属的潜在生态危害程度总体属中等,主要是由Cd的含量过高引起。  相似文献   

10.
通过在丰水期对贵州省某流域城市河段悬浮物和沉积物中的重金属含量进行测定,运用单因子指数法、生态风险评价法、因子分析法,初步探讨了该河段Cu、Zn、Pb、Hg、Cd、Cr、Ni及As等8种重金属元素的含量分布、污染特征、潜在生态风险及主要来源。检测结果显示,沉积物和悬浮物中Hg、Cd、Zn、Pb、As的平均含量较高,是贵州省土壤背景值的1.02~16.97倍。单因子指数评价结果表明:在沉积物中,Zn、Pb、As为轻度污染,Hg和Cd为重度污染;在悬浮物中,Cu、Pb、As为轻度污染,Zn为中度污染,Hg和Cd为重度污染。潜在生态风险指数评价结果显示,Hg和Cd的生态风险最大,为主要污染元素。研究区沉积物样品综合生态风险指数(RI)介于183.27~1 393.96,平均值为912.06,总体处于严重生态风险等级;悬浮物样品RI值介于341.53~612.38,平均值为436.85,总体处于重度生态风险等级。其中,沉积物样品重金属平均生态风险等级高于悬浮物样品,支流样品重金属生态风险等级总体上低于干流下游样品。根据因子分析法分析结果,初步推测沉积物及悬浮物Hg、Cd、Cr、Ni含量主要受工...  相似文献   

11.
Heavy Metal Pollution Assessment in Sediments of the Izmit Bay, Turkey   总被引:6,自引:0,他引:6  
Surface sediments in the fraction < 63 μm collected from eight stations along the north coastline of Izmit Bay, north-eastern Marmara Sea, Turkey, were analyzed for major (organic carbon, Al, Ba, Fe and Mg) and trace (As, Cd, Co, Cr, Cu, Mo, Ni, Pb and Zn) elements by using inductively coupled plasma atomic emission spectrometry (ICP-AES). Sediments heavily contaminated are evaluated by the Sediment Quality Guidelines (SQG) of US EPA. The results were compared with the marine sediment quality standards (SQS), as well as literature values reported to assess the pollution status of the sediments. The enrichment factors (EFs) were calculated to evaluate actual level of contamination for all the elements using the earth crust as reference matrix, based on elemental values by Mason which show a normal pattern near to unity. The analysis revealed two groups of elements: (i) Arsenic, Cd, Pb, and Zn are the most enriched elements; (ii) Barium, Co, Cr, Cu, Fe, Mg, Mo and Ni are at background levels. The results show that road traffic run-offs, paint industries and coal combustion are among the most significant sources.  相似文献   

12.
The assessment of marine pollution due to metals was made for surficial sediments sampled from 20 sites along Mediterranean coast of Egypt. The samples were dried, acid digested and analyzed for leachable and total heavy metal contents (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) by flame atomic absorption spectrophotometer (air–acetylene) with deuterium background correction. Evaluation of the heavy metals pollution status was carried out using enrichment factors (EFs), the effect range-low (ERL) and the effect range-median (ERM). The study showed high concentrations of Cd, Co, Pb, Ni and moderate concentrations of Cr, Cu and Mn were contaminated in the sediments of studied sites. The results of Spearman correlation, factor and cluster analysis of the heavy metals analyzed in the collected sediment were discussed. The main source of contamination is the offshore oil field and industrial wastes, which arise due to the ineffective and inefficient operation equipments, illegal discharge and lack of supervision and prosecution of offenders.  相似文献   

13.
Concentrations of elements (As, Co, Cu, Ni, Mo, Pb, V, and Zn) are studied in the sediments of two adjacent stretches of Chenar Rahdar river. The first stretch (S1) is influenced by urban and arable land wastewater, and the second (S2) is mainly loaded with industrial effluents. The average abundance order of heavy metals content in S1 sediments is Ni > V > Zn > Cu > Co > As > Pb > Mo and in S2 sediments is Ni > Zn > V > Cu > Mo > Pb > Co > As. The maximum average concentration for these heavy metals (except for As) occurs in the S2 sediments. The contamination factor (CF) base of background in S1 for eight analyzed elements is moderate. The CF for Cu, Zn, and Pb in S2 sediments is considerable. The highest CF in S1 and S2 sediments is observed for Mo (CF = 10.95 and 12.41) and indicates very high contamination. The application of modified degree of contamination values (mCd) indicates low and high degree of contamination (1.89–4.15) in S1 and S2, respectively. Calculated enrichment factors (EF) reveal enrichment of Mo and As in S1 and Zn, Cu, Mo, and Pb in S2 compared to the average abundances of background level. The maximum EF for Mo is 7.61 (significant enrichment), while Pb, Zn, and Cu with maximum EF between 2 and 5 indicate moderate contamination. Principal component analysis (PCA) shows distinctly different elemental associations in S1 and S2 sediments. The strong association of Zn, Co, Ni, Sc, Cu, Al and Fe in S1 suggests a similar source. The results of PCA for Zn, Pb, Mo and Cu in S2 (componente2) indicate that these metals are influenced by anthropogenic activity. Also, high loading heavy metals with OC (0.97) indicate that organic carbon plays a significant role in the distribution and sorption of these heavy metals in the sediments. Factor analysis indicates that As and Mo behave differently in sediment samples.  相似文献   

14.
Geochemical investigations of tidal flat coastal sediments at Ogori, Ozuki, and Kasado in Yamaguchi Bay of southwest Japan were conducted to determine their metal concentrations and to assess contamination levels, compared with sediment quality guidelines (SQG) and several pollutant indicators. Selected major oxides, trace elements, and total sulfur (TS) were determined by X-ray fluorescence. pH values of most samples were alkaline, indicating anoxic conditions. Average abundances of As, Pb, Zn, Cu, Ni, and Cr in Ozuki sediments were 11, 27, 109, 21, 19, and 52 mg/kg, respectively, compared to 9, 29, 80, 16, 18, and 42 mg/kg at Ogori and 12, 27, 151, 34, 30 and 80 mg/kg at Kasado, respectively. Average concentrations of As, Zn, and Cu in all samples and TiO(2), Fe(2)O(3), and P(2)O(5) at Kasado were greater than those of the upper continental crust. Contamination levels were assessed based on SQG, contamination factors (CF), pollution load index (PLI), enrichment factor (EF), and index of geoaccumulation (Igeo). According to the SQG of the US EPA, the sediments were heavily polluted with respect to As, whereas Zn, Cu, Ni, and Cr were classed as moderately polluted. The elevated CF values of As, Pb, and Zn identify moderate to considerable contamination, indicating that these metals are potentially toxic in the study area. Based on PLI and EF, the study sites are moderate to moderately severe polluted with As and Pb, moderately polluted with Zn, and weakly contaminated to noncontaminated with Cu, Ni, and Cr. The highest Igeo values for As, Pb, and Zn in the surface and core sediments reflected the tendency of metal contamination that seems to be related to their fine-grained nature, organic matter-rich sediments, and anthropogenic point sources. Trace metal contents were strongly correlated with Fe(2)O(3) and TiO(2), suggesting that Fe oxyhydroxides and detrital clastic load play a role in controlling abundances in the study area.  相似文献   

15.
镇江内江底泥重金属分布特征及潜在生态危害评价   总被引:7,自引:1,他引:6  
对镇江内江的底泥进行采集,测定底泥中的Cu、As、Hg、Cr、Pb、Cd、Zn、总磷、总氮、有机质的含量,采用潜在生态风险评价和相关性分析的方法,研究了底泥中重金属的污染水平、生态危害、分布特征和溯源。结果表明,(1)内江底泥中的重金属污染主要为Hg、Cd、As。各重金属单项潜在生态危害指数大小关系为Hg>Cd>As>Pb>Cu>Cr>Zn。(2)内江的整体生态环境受重金属的危害程度处在中等水平,重金属的生态威胁主要来自Hg,建议在达到强生态威胁程度的3#、8#、20#、21#采样点附近清理淤泥。(3)由重金属分布特征可知,湿地生态系统对重金属具有较好的吸附去除作用;在内江流速慢、死水多的地方易造成重金属富集;入江河口重金属富集也较明显;污染企业与重金属含量有直接关系。(4)由相关性探源可知,Cu、Zn、Cr主要来自于自然界,Hg、Cd、Pb主要来自于企业污水排放,As则来自于自然界和人为排放。  相似文献   

16.
To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.  相似文献   

17.
Distinguishing and quantifying anthropogenic trace metals and phosphorus accumulated in sediment is important for the protection of our aquatic ecosystems. Here, anthropogenic proportion and potential sources of trace metals and phosphorus in surface sediments of Chaohu Lake were evaluated based on the exhaustive geochemical data. The analysis shows that concentrations of major and trace metals, and phosphorus, displayed significant spatial diversity and almost all elements were over the pre-industrial background value, which should be related to the variations of sediment composition partially. Therefore, conservative element normalization was introduced and calculated enrichment factors (EFs) of the elements were referenced highlighting the human contamination. EFs of the major and trace metals, except Zn, Pb, and Cu, were all nearly 1.0, indicating the detrital origin. The EFs of Zn, Pb, Cu and phosphorus were 1.0–10.4, 1.0–3.8, 1.0–4.9, and 1.0–7.6, respectively, showing moderate to significant contamination. Higher EFs of Zn, Pb and Cu occurred in the mouth areas of Nanfei River and Zhegao River, and they decreased to the lake center in the northwest and northeast lake areas, respectively. We deduced that anthropogenic Zn, Pb, and Cu were mainly from urban and industrial point sources and the non-point sources of atmospheric deposition contributed little to their contamination. The EFs of phosphorus showed similar spatial degradation with that of Zn, Pb, and Cu. Moreover, higher EFs (>1) of phosphorus also occurred in other areas adjacent to the river mouths besides Nanfei River and Zhegao River. This indicated that the non-point agricultural source may also be responsible for the contamination of phosphorus in Chaohu Lake in addition to the urban sewage sources. Anthropogenic phosphorus was mainly concentrated in the speciation of NaOH-P, which had higher potential biological effects than the detrital proportion. Concentrations of Zn, Pb and Cu surpassed the threshold effect concentrations (TEC) of consensus-based sediment quality guidelines of freshwater ecosystems, especially in the contaminated northwest area of Chaohu Lake. This highlighted the contributions of anthropogenic contamination to the elevated potential biological effects of trace metals. Though there had been no obvious human contamination of Cr and Ni in Chaohu Lake, concentrations were all over the TECs, which may be due to higher background levels in the parent materials of soils and bedrocks in Chaohu Lake catchment.  相似文献   

18.
Concentrations of heavy metals were determined in the water column (including the sea-surface microlayer, subsurface, mid-depth and bottom water) and sediments from Singapore’s coastal environment. The concentration ranges for As, Cd, Cr, Cu, Ni, Pb and Zn in the seawater dissolved phase (DP) were 0.34–2.04, 0.013–0.109, 0.07–0.35, 0.23–1.16, 0.28–0.78, 0.009–0.062 and 0.97–3.66 μg L−1 respectively. The ranges for Cd, Cr, Cu, Ni, Pb and Zn in the suspended particulate matter (SPM) were 0.16–0.73, 6.72–53.93, 12.87–118.29, 4.34–60.71, 1.10–6.08 and 43.09–370.49 μg g−1, respectively. Heavy metal concentrations in sediments ranged between 0.054–0.217, 37.48–50.52, 6.30–21.01, 13.27–26.59, 24.14–37.28 and 48.20–62.36 μg g−1 for Cd, Cr, Cu, Ni, Pb and Zn, respectively. The lowest concentrations of metals in the DP and SPM were most frequently found in the subsurface water while the highest concentrations were mostly observed in the SML and bottom water. Overall, heavy metals in both the dissolved and particulate fractions have depth profiles that show a decreasing trend of concentrations from the subsurface to the bottom water, indicating that the prevalence of metals is linked to the marine biological cycle. In comparison to data from Greece, Malaysia and USA, the levels of metals in the DP are considered to be low in Singapore. Higher concentrations of particulate metals were reported for the Northern Adriatic Sea and the Rhine/Meuse estuary in the Netherlands compared to values reported in this study. The marine sediments in Singapore are not heavily contaminated when compared to metal levels in marine sediments from other countries such as Thailand, Japan, Korea, Spain and China.  相似文献   

19.
Seasonal variation of the concentrations of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were measured by ICP-AES in the water and sediment from the Saricay Stream, Geyik Dam and Ortakoy Well in the same basin. Comparisons between trace metal concentrations in water and sediment in three sources (Stream, Dam and Well) were made. The concentrations of a large number of trace metals in the water and sediment were generally higher in the Stream than in the Well and Dam, particularly in summer. Trace metal concentration ranges in sediments of the Saricay Stream and its sources showed very wide ranges (as mass ratio): Co: 5–476 μg g−1, Cr: 15–1308 μg g−1, Cu: 7–128 μg g−1, Fe: 1120–13210 μg g−1, Mn: 150–2613 μg g−1, Ni: 102–390 μg g−1, Pb: 0.7–31.3 μg g−1 and Zn: 18–304 μg g−1, whereas Cd was not detected. Trace metal concentration ranges found in waters were: Co: 9.5–20.7 μg L−1, Cr: 20.3–284 μg L−1, Cu: 170–840 μg L−1, Fe: 176–1830 μg L−1, Mn: 29.3–387 μg L−1, and Ni: 4.3–21.9 μg L−1. Among the trace metals studied, Cd and Zn in two seasons and Pb in winter were usually not detected or in the recommended levels. In addition, Cd was not detected in the sediment during the winter season. The analysis of variance (one-way ANOVA) and correlation matrix was employed for the sediment and water samples of the two field surveys (summer and winter) comparison. The three sources showed differences in metal contents. The metal levels in sediments displayed marked seasonal and regional variations, which were attributed to anthropogenic influences and natural processes. In the Saricay Stream, high values of metals during the dry season showed an anthropological effect from small industry firms, e.g.: an olive mill and a dairy farm or water dilution during summer seasons. Finally, the pollution in this basin probably originated from small industrial, low quality coal-burned thermal power plants, and particularly agricultural and domestic waste discharges.  相似文献   

20.
Due to rapid industrialization and urbanization during last two decades, contamination of soils by heavy metals is on an increase globally. Lands under peri-urban agriculture are the worst affected. In NCT, Delhi about 14.4% of land area is chemically degraded. In order to take care of this problem, recently the Supreme Court of India ordered to shift various non-confirming (about 39,000 units) industries to regions outside NCT, Delhi. However in spite of this, there have been several reports and parliamentary debates on the phyto-toxicity and extensive accumulation of heavy metals in the region. Literature review revealed that the basis of these debates is a few studies on some point locations in/around Delhi. It was further observed that information on the distribution and extent of heavy metal pollution problem in the region was completely missing. The present study was thus basically aimed at assessing the spatial distribution/extent and type of heavy metal pollution in the study area, for enabling future designing of appropriate site-specific management measures by the decision makers.For this, detailed spatial information on bio-available heavy metal concentrations in the soils and surface/sub-surface waters of NCT (Delhi) was generated through actual soil/water surveys, standard laboratory methods and GIS techniques. The study showed that concentration of all micronutrients (viz. Zn: 0.05–0.18 ppm; Cu: in traces; Fe: 0–0.5 ppm; and Mn: 0–1.2 ppm) and most heavy metals (viz. Ni: 0–0.7 ppm; Pb: 0–0.15 ppm and Cd: in traces) in the surface/sub-surface irrigation waters were well within permissible limits. However Cr concentrations in irrigation waters of Alipur and Shahdara blocks were far above their maximum permissible limit of 1 ppm. It was further observed that Ni and Cr concentrations in the drinking waters of almost entire test area were far above maximum permissible levels of 0.02 and 0.01 ppm, respectively. Bio-available concentrations of several heavy metals (viz. Pb: 0.1–2 ppm; Cd: traces; Ni: 0.05–2 ppm and Cr: 0–0.4 ppm) in the study area soils were also observed to be well within the maximum permissible limits. However there were point Cu contaminations (5–10 ppm) in the sewage-sludge amended soils of vegetable growing areas near south Shahdara block. This was attributed to increased Cu availability due to oxidized acidic conditions generated by over-irrigation of agricultural lands. Available Mn concentrations in Kanjhawala, western Najafgarh and Alipur soils were also observed to be above maximum permissible limit of 10 ppm. This was observed to be mainly due to the geology (i.e. presence of Mn rich sedimentary rocks) and prevalence of reduced acidic conditions, due to paddy cultivation, in these areas. It was further observed that there is acute zinc (Zn) deficiency (< 0.6 ppm) in paddy growing soils of north Kanjhawala, Alipur and some parts of Najafgarh and Shahdara blocks due to extensive leaching of available Zn fractions to lower soil horizons. Similar available Zn deficiencies in high pH (8.5) soils of areas around Bamnoli village in E-Najafgarh block were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号