首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
为获得偶氮二异丁腈(AIBN)在各种热应力条件下的危险参数,通过简化的压力容器试验测试AIBN的热分解激烈性等级,采用差示扫描量热仪(DSC)和绝热量热仪(ARC)对AIBN的热分解过程进行研究,用动力学与热稳定性分析软件AKTS计算动力学参数在整个反应进程中的变化情况,并根据ARC测试结果推算自加速分解温度(TSADT)。结果表明:AIBN的热分解激烈性为Ⅱ类,易呈现爆炸特性;其初始分解温度和TSADT很低,分别约为78℃和61℃,且分解放热过程和熔融吸热过程同时发生。因此,在AIBN的生产、使用、贮存和运输等过程中应加强温度监控,并根据实际情况采取降温措施。  相似文献   

2.
为研究高能钝感材料2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)与氟橡胶造型粉的热分解特性和热稳定性,利用绝热加速量热仪测试其在绝热条件下的热分解过程,获得了热分解的升温速率、温度和压力等随时间的变化关系及升温速率、压力随温度的变化曲线。结果表明,绝热分解开始前有一个缓慢的吸热升温过程,绝热分解过程主要有3个放热反应阶段,其中第二阶段升温速率升降幅度较大,为主要的热分解阶段。绝热分解反应的表观活化能、指前因子和反应热分别为358.87 kJ/mol、3.374×1027min-1和685.62 J/g。造型粉初始分解温度高达290.6℃,具有良好的热稳定性。  相似文献   

3.
为了评估反应体系发生热失控时引发3-甲基吡啶-N-氧化物分解的可能性,采用差示扫描量热仪(DSC Q20)对3-甲基吡啶-N-氧化物在不同升温速率下的催化分解过程进行了试验研究。采用Kissinger法和Starink法计算热分解反应的活化能和指前因子。根据得到的活化能,计算3-甲基吡啶-N-氧化物在不同温度下到达最大反应速率所需要的时间(TMRad),结合可能性评估判据进行评估。结果表明:3-甲基吡啶-N-氧化物的分解由两部分组成;两种方法计算得到的活化能较为接近;当冷却失效,反应体系热失控温度达到448 K时,3-甲基吡啶-N-氧化物发生分解的可能性为高级,当温度为433~443 K时,可能性为中级,而当温度低于428 K时,可能性为低级。  相似文献   

4.
为了研究十六烷值改进剂—硝酸异辛酯(EHN)的热稳定性与热危险性,采用C600微型量热仪测试硝酸异辛酯的热分解特性.利用热分析技术考察温升速率对EHN热分解特性的影响,并利用活化能、TMRad(在绝热条件下最大反应速率到达时间)和自加速分解速率(SADT)方法评价此改进剂的危险性.结果表明,EHN发生分解反应的起始放热温度和最大放热温度均随着温升速率的增加而增大,且四种温升速率的反应机理是一致的.计算得到EHN热分解活化能在143.6-213.6kJ/mol之间.通过绝热条件下TMRad评价得出EHN在常温常压条件下不易发生危险失控,EHN自加速分解温度为98℃>75℃,即在常温条件下储运是安全的,为储运硝酸异辛酯提供有力的数据支持.  相似文献   

5.
为了系统研究环氧乙烷水溶液失控反应热动力学参数的变化规律,采用等温扫描量热仪C600和绝热量热仪VSP-2分别对环氧乙烷水溶液进行了量热试验研究,得到了纯环氧乙烷的热稳定性数据,以及不同质量分数环氧乙烷水溶液的起始放热温度、最高放热温度和压力、放热量、绝热温升及失控反应过程的温度、压力变化等。结果表明,纯环氧乙烷发生失控反应的起始温度接近360℃,其放热量高达2 600 k J/kg。水加入环氧乙烷能够显著降低体系的起始放热温度至200℃以下。随环氧乙烷水溶液质量分数升高,失控反应致灾后果的严重程度明显提高。最高温度和压力、温升和压升速率、放热量及绝热温升随环氧乙烷质量分数升高而增大,而达到最大反应速率的时间减小。  相似文献   

6.
过氧化氢异丙苯热稳定性与热安全性研究   总被引:2,自引:1,他引:1  
为研究过氧化氢异丙苯(CHP)的热稳定性和热安全性,利用C80微量量热仪对CHP在空气中的热分解进行试验研究。利用热分析技术研究CHP的热分解,得到了升温速率对CHP热分解的影响,CHP热分解的活化能,绝热条件下最大反应速率到达时间Tmrad和不同包装下的自加速分解温度。结果表明:随着升温速率的增加,CHP的起始放热温度和最大放热温度随之升高;CHP热分解的活化能范围为52~91 kJ/mol;Tmrad为1,8,24,50和100 h时对应的起始温度分别为118.08,75.41,55.83,44.83和34.52℃;CHP的储罐内径越大,其对应的自加速分解温度越低。  相似文献   

7.
为了分析过氧化二异丙苯(Dicumyl Peroxide,DCP)的热稳定性和热安全性,利用C80微量量热仪对DCP在空气中的热分解及稳定性能进行试验研究,得到了升温速率对DCP热分解的影响规律,运用AKTS高级热动力学软件计算得到DCP热分解的活化能及指前因子、绝热条件下最大反应速率到达时间TMRad和不同包装下的自加速分解温度。结果表明:随升温速率增加,DCP的起始放热温度和最大放热温度升高;并由Friedman法得到不同转化率下活化能E和指前因子A的关系,计算得到DCP热分解的活化能范围为50~130 kJ/mol;TMRad为1 h、8 h、24 h、50 h和100 h时对应的起始温度分别为105.33℃、84.38℃、74.38℃、68℃和62℃;DCP的储罐内径越大,其对应的自加速分解温度越低。在生产、制造、储存、运输等过程中,应防止因温度变化而引发DCP的自分解放热爆炸事故。  相似文献   

8.
使用加速量热仪(ARC)研究硝酸异辛酯(EHN)的热分解,得到热分解温度随时间的变化曲线,自放热速率、分解压力随温度的变化曲线以及分解压力随升温速率的变化曲线。分析在绝热条件下硝酸异辛酯的热分解反应动力学和热分解过程,计算表观活化能、指前因子和反应热等参数。根据绝热热分解的起始温度和反应热数据,给出硝酸异辛酯在反应危险度等级中的分类,并计算在75℃时的反应风险指数。  相似文献   

9.
过氧化甲乙酮的热危险性研究   总被引:1,自引:0,他引:1  
为研究过氧化甲乙酮(MEKPO)在运输与储存中的热危险性,利用差示扫描量热仪(DSC)对质量分数为52%的MEKPO溶液(以2,2,4-三甲基-1,3-戊二醇二异丁酸酯为溶剂)进行测试,得到其起始分解温度T0约为40℃,比放热量ΔH约为1.24 kJ/g。运用加速量热仪(ARC)对3种MEKPO溶液(40%,45%和52%)及MEKPO纯品(化学纯)在绝热条件下进行了热分解测试,并在此基础上,借助Semenov热爆炸模型,计算得到上述样品在50 kg包件下的自加速分解温度(TSADT)分别为65.64,63.72,55.88和51.17℃。研究结果表明,加入稀释稳定剂是降低MEKPO热危险性的有效途径,且MEKPO混合物中其质量分数越大,其危险性越高。  相似文献   

10.
为研究二叔丁基过氧化物(DTBP)热失控危险性,利用C600微量量热仪对DTBP热分解动力学进行试验研究,测定DTBP在不同升温速率下的起始放热温度和分解热,分别用非等转化率法和等转化率法得到DTBP热分解反应的动力学参数。用非等转化率法确定反应的最佳反应级数为1,相应的活化能分别为137.75、132.60、128.61和122.93 kJ/mol,指前因子分别为8.82×1012、6.69×1012、2.06×1012和3.89×10111/s。用等转化率法确定的活化能范围为102~138 kJ/mol,并拟合出活化能与转化率的关系曲线。结合计算出的动力学参数,通过对DTBP分解机理的分析,可以推断其具有热失控危险性。  相似文献   

11.
混酸中甲苯半间歇硝化过程的危险性研究   总被引:2,自引:2,他引:2  
为了解甲苯在混酸中硝化的危险性,用差示扫描量热法(DSC)测试甲苯、混酸及一硝基甲苯的热分解情况,用反应量热仪(RC1e)研究搅拌速度、温度及硝酸过用率3因素对目的反应的影响。结果表明,混酸分解温度最低,而当目的反应的3因素出现异常,以及反应过程中发生冷却失效时,均可导致硝化反应体系不稳定,此时若不停止加料,并采取措施,易引起混酸的分解,进一步可引起一硝基甲苯的分解,导致严重后果。  相似文献   

12.
硝酸及氯离子对高温硝酸铵水溶液热危险性的影响研究   总被引:3,自引:1,他引:3  
国内外学者对硝酸铵的危险性进行了大量的研究,而对其水溶液的危险性至今开展不多。笔者采用差示扫描量热仪(DSC)及全自动反应量热仪(RC1e)对高温状态下的硝酸铵水溶液的热分解危险性、杂质离子对其稳定性的影响进行了研究。纯硝酸铵和90%硝酸铵水溶液的DSC实验表明,90%硝酸铵溶液和分析纯硝酸铵具有相似的热爆炸危险;90%硝酸铵水溶液在140~180℃之间的RC1e试验表明:硝酸或氯离子单独存在时,对硝酸铵分解都有不同程度的抑制作用,而同时存在时则大大降低体系的热稳定性。该结果对保障硝酸铵在生产、使用过程中的安全具有重要的参考价值。  相似文献   

13.
The exothermic oxidation of 3-methylpyridine with hydrogen peroxide was analyzed by Reaction Calorimeter (RC1e) in semi-batch operation. Heat releasing rate and heat conversion were studied at different operating conditions, such as reaction temperature, feeding rate, the amount of catalyst and so on. The thermal hazard assessment of the oxidation was derived from the calorimetric data, such as adiabatic temperature rise (ΔTad) and the maximum temperature of synthesis reaction (MTSR) in out of control conditions. Along with thermal decomposition of the product, the possibility of secondary decomposition under runaway conditions was analyzed by time to maximum rate (TMRad). Also, risk matrix was used to assess the risk of the reaction. Results indicated that with the increase of the reaction temperature, the reaction heat release rate increased, while reaction time and exotherm decreased. With the increase of feeding time, heat releasing rate decreased, but reaction time and exotherm increased. With the amount of the catalyst increased, heat releasing rate increased, reaction time decreased and exothermic heat increased. The risk matrix showed that when the reaction temperature was 70 °C, feeding time was 1 h, and the amount of catalyst was 10 g and 15 g, respectively, the reaction risk was high and must be reduced.  相似文献   

14.
过氧化苯甲酰合成工艺热危险性分析   总被引:1,自引:0,他引:1  
采用RC1e反应量热仪对过氧化苯甲酰(BPO)合成工艺危险性进行研究,测试不同Na OH溶液初始浓度(1.96 mol/L、3.93 mol/L、7.14 mol/L)下反应的放热历程,获得BPO合成反应过程中的热危险性参数,并采用PHI-TECⅡ绝热加速量热仪对产物进行热稳定性分析,最后评估该反应热风险。结果表明,Na OH浓度为7.14 mol/L时,反应初期放热速率慢,热累积度大,后期反应剧烈,绝热温升(ΔTad)及热失控时工艺反应达到的最高温度(MTSR)最大。热稳定性试验表明,合成的粗产物BPO初始分解温度、活化能、指前因子、最大放热速率到达时间为24 h时的对应温度(TD24)均低于纯BPO。利用合成粗产物BPO的TD24对反应进行危险度评估,该工艺热危险性等级均为5级,工艺危险性大。  相似文献   

15.
采用先进的绝热加速量热仪为手段,对二甲亚砜的热稳定性进行了系统研究,其内容涉及纯二甲亚砜的热稳定性、加酸碱和硫化物等杂质后二甲亚砜的热稳定性,包括初始放热温度、温升速率、温度-压力等;通过修正试验数据,消除了热惰性因子的影响;得到了二甲亚砜的热稳定性特性。研究表明,在酸、碱存在时,二甲亚砜在室温下即可发生强烈的放热反应,导致二甲亚砜的分解温度提前。该实验研究结果,对二甲亚砜的安全生产工艺过程控制具有重要参考价值。  相似文献   

16.
The results of a Round-Robin test on the decomposition reaction of 15% w/w di-tertiary-butyl peroxide (DTBP) in toluene are described in the present paper. The aim of the Round-Robin test was to compare the results of different (pseudo-)adiabatic reaction calorimeters in terms of accuracy and reliability for practical applications. The experiments were performed in the Accelerating Rate Calorimeter (ARC), Phi-Tec, Pressure Dewar calorimeter (Dewar), temperature controlled reactor (CRVM) and the Automatic Pressure Track Accelerating Calorimeter (APTAC). Although the various types of equipment showed differences in accuracy and reproducibility, in general, no specific type of equipment seems to out-perform the others in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号