首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of patch size and isolation on metapopulation dynamics have received wide empirical support and theoretical formalization. By contrast, the effects of patch quality seem largely underinvestigated, partly due to technical difficulties in properly assessing quality. Here we combine habitat-quality modeling with four years of demographic monitoring in a metapopulation of greater white-toothed shrews (Crocidura russula) to investigate the role of patch quality on metapopulation processes. Together, local patch quality and connectivity significantly enhanced local population sizes and occupancy rates (R2 = 14% and 19%, respectively). Accounting for the quality of patches connected to the focal one and acting as potential sources improved slightly the model explanatory power for local population sizes, pointing to significant source-sink dynamics. Local habitat quality, in interaction with connectivity, also increased colonization rate (R2 = 28%), suggesting the ability of immigrants to target high-quality patches. Overall, patterns were best explained when assuming a mean dispersal distance of 800 m, a realistic value for the species under study. Our results thus provide evidence that patch quality, in interaction with connectivity, may affect major demographic processes.  相似文献   

2.
《Ecological modelling》2005,183(4):411-423
Habitat fragmentation can decrease local population persistence by reducing connectivity, which is a function of dispersal of individuals among habitat fragments. Dispersal is often treated as diffusion in population models, even though for many species it is a result of a series of behavioral decisions. We developed a metapopulation model to explore the potential importance of dispersal behaviors in driving metapopulation dynamics. We incorporated types of behavior that affect dispersal—colonization inhibiting, colonization enhancing, extinction inhibiting, extinction enhancing, rescue enhancing, rescue inhibiting—into Levins’ (1969) metapopulation model and projected occupancy rates for a variety of parameter values. Examples from the literature of behaviors associated with each of these parameters are provided. Our model simplifies into previously published metapopulation models that incorporate only a single behavior, and we present a density-dependent rescue function that leads to multiple non-zero equilibria. We found a variety of behavioral effects on metapopulations. Rescue enhancement fills patches faster than does colonization enhancement or extinction inhibition, and declines in patch occupancy are moderate with extinction enhancement, but colonization inhibition causes metapopulation extinction. We also found that with colonization and extinction inhibitions, equilibrium patch occupancy is inversely related to patch turnover rate. With density-dependent rescue, persistence depends not only on the strength of the strong rescue effect, but also on having a sufficient initial fraction of patches occupied; the stronger the rescue effect, the lower this fraction can be. This study suggests that dispersal behavior can have strong influences on metapopulation dynamics. It confirms the importance of understanding the relationship between landscape structure and dispersal behavior in understanding population persistence.  相似文献   

3.
Johansson V  Ranius T  Snäll T 《Ecology》2012,93(2):235-241
The colonization-extinction dynamics of many species are affected by the dynamics of their patches. For increasing our understanding of the metapopulation dynamics of sessile species confined to dynamic patches, we fitted a Bayesian incidence function model extended for dynamic landscapes to snapshot data on five epiphytic lichens among 2083 mapped oaks (dynamic patches). We estimate the age at which trees become suitable patches for different species, which defines their niche breadth (number of suitable trees). We show that the colonization rates were generally low, but increased with increasing connectivity in accordance with metapopulation theory. The rates were related to species traits, and we show, for the first time, that they are higher for species with wide niches and small dispersal propagules than for species with narrow niches or large propagules. We also show frequent long-distance dispersal in epiphytes by quantifying the relative importance of local dispersal and background deposition of dispersal propagules. Local stochastic extinctions from intact trees were negligible in all study species, and thus, the extinction rate is set by the rate of patch destruction (tree fall). These findings mean that epiphyte metapopulations may have slow colonization-extinction dynamics that are explained by connectivity, species traits, and patch dynamics.  相似文献   

4.
Two important processes determining the dynamics of spatially structured populations are dispersal and the spatial covariance of demographic fluctuations. Spatially explicit approaches to conservation, such as reserve networks, must consider the tension between these two processes and reach a balance between distances near enough to maintain connectivity, but far enough to benefit from risk spreading. Here, we model this trade-off. We show how two measures of metapopulation persistence depend on the shape of the dispersal kernel and the shape of the distance decay in demographic covariance, and we consider the implications of this trade-off for reserve spacing. The relative rates of distance decay in dispersal and demographic covariance determine whether the long-run metapopulation growth rate, and quasi-extinction risk, peak for adjacent patches or intermediately spaced patches; two local maxima in metapopulation persistence are also possible. When dispersal itself fluctuates over time, the trade-off changes. Temporal variation in mean distance that propagules are dispersed (i.e., propagule advection) decreases metapopulation persistence and decreases the likelihood that persistence will peak for adjacent patches. Conversely, variation in diffusion (the extent of random spread around mean dispersal) increases metapopulation persistence overall and causes it to peak at shorter inter-patch distances. Thus, failure to consider temporal variation in dispersal processes increases the risk that reserve spacings will fail to meet the objective of ensuring metapopulation persistence. This study identifies two phenomena that receive relatively little attention in empirical work on reserve spacing, but that can qualitatively change the effectiveness of reserve spacing strategies: (1) the functional form of the distance decay in covariance among patch-specific demographic rates and (2) temporal variation in the shape of the dispersal kernel. The sensitivity of metapopulation recovery and persistence to how covariance of vital rates decreases with distance suggests that estimating the shape of this function is likely to be as important for effective reserve design as estimating connectivity. Similarly, because temporal variation in dispersal dynamics influences the effect of reserve spacing, approaches to reserve design that ignore such variation, and rely instead on long-term average dispersal patterns, are likely to lead to lower metapopulation viability than is actually achievable.  相似文献   

5.
Yaari G  Ben-Zion Y  Shnerb NM  Vasseur DA 《Ecology》2012,93(5):1214-1227
Recent theory and experimental work in metapopulations and metacommunities demonstrates that long-term persistence is maximized when the rate at which individuals disperse among patches within the system is intermediate; if too low, local extinctions are more frequent than recolonizations, increasing the chance of regional-scale extinctions, and if too high, dynamics exhibit region-wide synchrony, and local extinctions occur in near unison across the region. Although common, little is known about how the size and topology of the metapopulation (metacommunity) affect this bell-shaped relationship between dispersal rate and regional persistence time. Using a suite of mathematical models, we examined the effects of dispersal, patch number, and topology on the regional persistence time when local populations are subject to demographic stochasticity. We found that the form of the relationship between regional persistence time and the number of patches is consistent across all models studied; however, the form of the relationship is distinctly different among low, intermediate, and high dispersal rates. Under low and intermediate dispersal rates, regional persistence times increase logarithmically and exponentially (respectively) with increasing numbers of patches, whereas under high dispersal, the form of the relationship depends on local dynamics. Furthermore, we demonstrate that the forms of these relationships, which give rise to the bell-shaped relationship between dispersal rate and persistence time, are a product of recolonization and the region-wide synchronization (or lack thereof) of population dynamics. Identifying such metapopulation attributes that impact extinction risk is of utmost importance for managing and conserving the earth's evermore fragmented populations.  相似文献   

6.
Yoo HJ 《Ecology》2006,87(3):634-647
In spatially heterogeneous systems, utilizing population models to integrate the effects of multiple population rates can yield powerful insights into the relative importance of the component rates. The relative importance of demographic rates and dispersal in shaping the distribution of the western tussock moth (Orgyia vetusta) among patches of its host plant was explored using stage-structured population models. Tussock moth dispersal occurs passively in first-instar larvae and is poor or absent in all other life stages. Spatial surveys suggested, however, that moth distribution is not well explained by passive dispersal; moth populations were greater on small patches and on isolated ones. Further analysis showed that several local demographic rates varied significantly with patch characteristics. Two mortality factors in particular may explain the observed patterns. First, crawler mortality both increased with patch size and was density-dependent. A single-patch difference equation model showed mortality related to patch size is strong enough to overcome the homogenizing effect of density dependence; greater equilibrium densities were predicted for smaller patches. Second, although three rates were found to vary with local patch density, only pupal parasitism by a chalcid wasp could potentially account for higher moth abundances on isolated patches. A spatially explicit simulation model of the multiple-patch system showed that spatial variation in pupal parasitism is indeed strong enough to generate such a pattern. These results demonstrate that habitat spatial structure can affect multiple population processes simultaneously, and even relatively low attack rates imposed on a reproductively valuable life stage of the host can have a dominant effect on population distribution among habitat patches.  相似文献   

7.
Altermatt F  Ebert D 《Ecology》2010,91(10):2975-2982
Migration is the key process to understand the dynamics and persistence of a metapopulation. Many metapopulation models assume a positive correlation between habitat patch size or stability and the number of emigrants. However, few empirical data exist, and habitat patch size and habitat stability may affect dispersal differently than they affect local persistence. Here, we studied the production of the migration stage (i.e., resting eggs called ephippia) of the cladoceran Daphnia magna in a metapopulation consisting of 530 rock pool habitat patches over 25 years. Earlier, the functioning of this metapopulation was explained with a Levins-type metapopulation model or with a mainland-island metapopulation model, based on local extinction and colonization data or time series data, respectively. We used pool volume, hydroperiod length, and number of desiccation events to calculate per-pool production of ephippia (i.e., migration stages). We estimated that populations in small and ephemeral habitat patches produced more than half of the 250 000 to 1 million ephippia that were produced in the metapopulation as a whole per year between 1982 and 2006. Furthermore, these small populations contributed approximately 90% of the ephippia exposed during desiccation events, while the contribution of the long-lived populations in large pools was minimal. We term this an "inverse mainland-island" type metapopulation and propose that populations in small, ephemeral habitat patches may also be the driving force for metapopulation dynamics in other systems.  相似文献   

8.
Carson HS  Cook GS  López-Duarte PC  Levin LA 《Ecology》2011,92(10):1972-1984
Recently researchers have gone to great lengths to measure marine metapopulation connectivity via tagging, genetic, and trace-elemental fingerprinting studies. These empirical estimates of larval dispersal are key to assessing the significance of metapopulation connectivity within a demographic context, but the life-history data required to do this are rarely available. To evaluate the demographic consequences of connectivity we constructed seasonal, size-structured metapopulation matrix models for two species of mytilid mussel in San Diego County, California, USA. The self-recruitment and larval exchange terms were produced from a time series of realized connectivities derived from trace-elemental fingerprinting of larval shells during spring and fall from 2003 to 2008. Both species exhibited a strong seasonal pattern of southward movement of recruits in spring and northward movement in fall. Growth and mortality terms were estimated using mark-recapture data from representative sites for each species and subpopulation, and literature estimates of juvenile mortality. Fecundity terms were estimated using county-wide settlement data from 2006-2008; these data reveal peak reproduction and recruitment in fall for Mytilus californianus, and spring for M. galloprovincialis. Elasticity and life-stage simulation analyses were employed to identify the season- and subpopulation-specific vital rates and connectivity terms to which the metapopulation growth rate (lambda) was most sensitive. For both species, metapopulation growth was most sensitive to proportional changes in adult fecundity, survival and growth of juvenile stages, and population connectivity, in order of importance, but relatively insensitive to adult growth or survival. The metapopulation concept was deemed appropriate for both Mytilus species as exchange between the subpopulations was necessary for subpopulation persistence. However, highest metapopulation growth occurred in years when a greater proportion of recruits was retained within the predominant source subpopulation. Despite differences in habitat and planktonic duration, both species exhibited similar overall metapopulation dynamics with respect to key life stages and processes. However, different peak reproductive periods in an environment of seasonal current reversals led to different regional (subpopulation) contributions to metapopulation maintenance; this result emphasizes the importance of connectivity analysis for spatial management of coastal resources.  相似文献   

9.
This paper presents a metapopulation study of the bush cricket, Metrioptera bicolor , living in a recently fragmented landscape. The species inhabits grass and heathland patches of varying area and isolation. Analyses are made of how these geometrical factors affect local population size and density, distribution pattern, and the probability of local extinction and colonization. The proportion of available patches occupied varied between 72 and 79% during 1985–1990. Unoccupied patches were smaller and more isolated than those that were occupied. Patches where populations became extinct during this period were smaller than those with persisting populations. Since local population size was well correlated with patch area, it was clear that stochastic extinctions only occurred in small populations. Critical patch size for population extinction was approximately half a hectare. Colonized patches were less isolated than those that had not been colonized. Critical inter-patch distance for colonization was about 100 meters. The turnover was restricted to an identifiable share of the available patches. Only 33% of the patches were so small that extinction due to stochastic causes could be considered highly probable. This metapopulation will therefore most likely persist over a considerable period in its present spatial structure. There are apparent threats of further fragmentation, however, and nothing is known about the likelihood of large-scale extinctions resulting from extremely unfavorable weather conditions. Nevertheless, our results show that it is appropriate to include geometrical factors in metapopulation models.  相似文献   

10.
Habitat fragmentation is expected to impose strong selective pressures on dispersal rates. However, evolutionary responses of dispersal are not self-evident, since various selection pressures act in opposite directions. Here we disentangled the components of dispersal behavior in a metapopulation context using the Virtual Migration model, and we linked their variation to habitat fragmentation in the specialist butterfly Proclossiana eunomia. Our study provided a nearly unique opportunity to study how habitat fragmentation modifies dispersal at the landscape scale, as opposed to microlandscapes or simulation studies. Indeed, we studied the same species in four landscapes with various habitat fragmentation levels, in which large amounts of field data were collected and analyzed using similar methodologies. We showed the existence of quantitative variations in dispersal behavior correlated with increased fragmentation. Dispersal propensity from habitat patches (for a given patch size), and mortality during dispersal (for a given patch connectivity) were lower in more fragmented landscapes. We suggest that these were the consequences of two different evolutionary responses of dispersal behavior at the individual level: (1) when fragmentation increased, the reluctance of individuals to cross habitat patch boundaries also increased; (2) when individuals dispersed, they flew straighter in the matrix, which is the best strategy to improve dispersal success. Such evolutionary responses could generate complex nonlinear patterns of dispersal changes at the metapopulation level according to habitat fragmentation. Due to the small size and increased isolation of habitat patches in fragmented landscapes, overall emigration rate and mortality during dispersal remained high. As a consequence, successful dispersal at the metapopulation scale remained limited. Therefore, to what extent the selection of individuals with a lower dispersal propensity and a higher survival during dispersal is able to limit detrimental effects of habitat fragmentation on dispersal success is unknown, and any conclusion that metapopulations would compensate for them is flawed.  相似文献   

11.
Although larval dispersal is crucial for the persistence of most marine populations, dispersal connectivity between sites is rarely considered in designing marine protected area networks. In particular the role of structural characteristics (known as topology) for the network of larval dispersal routes in the conservation of metapopulations has not been addressed. To determine reserve site configurations that provide highest persistence values with respect to their connectivity characteristics, we model nine connectivity topological models derived from graph theory in a demographic metapopulation model. We identify reserve site configurations that provide the highest persistence values for each of the metapopulation connectivity models. Except for the minimally connected and fully connected populations, we observed two general ‘rules of thumb’ for optimising the mean life time for all topological models: firstly place the majority of reserves, so that they are neighbours of each other, on the sites where the number of connections between the populations is highest (hub), secondly when the reserves have occupied the majority of the vertices in the hub, then select another area of high connectivity and repeat. If there are no suitable hubs remaining then distribute the remaining reserves to isolated locations optimising contact with non-reserved sites.  相似文献   

12.
Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives. Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependencia  相似文献   

13.
Response to habitat fragmentation may not be generalized among species, in particular for plant communities with a variety of dispersal traits. Calcareous grasslands are one of the most species‐rich habitats in Central Europe, but abandonment of traditional management has caused a dramatic decline of calcareous grassland species. In the Southern Franconian Alb in Germany, reintroduction of rotational shepherding in previously abandoned grasslands has restored species diversity, and it has been suggested that sheep support seed dispersal among grasslands. We tested the effect of rotational shepherding on demographic and genetic connectivity of calcareous grassland specialist plants and whether the response of plant populations to shepherding was limited to species dispersed by animals (zoochory). Specifically, we tested competing dispersal models and source and focal patch properties to explain landscape connectivity with patch‐occupancy data of 31 species. We fitted the same connectivity models to patch occupancy and nuclear microsatellite data for the herb Dianthus carthusianorum (Carthusian pink). For 27 species, patch connectivity was explained by dispersal by rotational shepherding regardless of adaptations to zoochory, whereas population size (16% species) and patch area (0% species) of source patches were not important predictors of patch occupancy in most species. [Correction made after online publication, February 25, 2014: Population size and patch area percentages were mistakenly inverted, and have now been fixed.] Microsite diversity of focal patches significantly increased the model variance explained by patch occupancy in 90% of the species. For D. carthusianorum, patch connectivity through rotational shepherding explained both patch occupancy and population genetic diversity. Our results suggest shepherding provides dispersal for multiple plant species regardless of their dispersal adaptations and thus offers a useful approach to restore plant diversity in fragmented calcareous grasslands. Efectos del Pastoreo Rotacional sobre la Conectividad Genética y Demográfica de Plantas de Pastizales Calcáreos  相似文献   

14.
Dispersal is the key process enhancing the long-term persistence of metapopulations in heterogeneous and dynamic landscapes. However, any individual emigrating from a occupied patch also increases the risk of local population extinction. The consequences of this increase for metapopulation persistence likely depend on the control of emigration. In this paper, we present results of individual-based simulations to compare the consequences of density-independent (DIE) and density-dependent (DDE) emigration on the extinction risk of local populations and a two-patch metapopulation. (1) For completely isolated patches extinction risk increases linearly with realised emigration rates in the DIE scenario. (2) For the DDE scenario extinction risk is nearly insensitive to emigration as longs as emigration probabilities remain below ≈0.2. Survival chances are up to half an order of magnitude larger than for populations with DIE. (3) For low dispersal mortality both modes of emigration increase survival of a metapopulation by ca. one order of magnitude. (4) For high dispersal mortality only DDE can improve the global survival chances of the metapopulation. (5) With DDE individuals are only removed from a population at high population density and the risk of extinction due to demographic stochasticity is thus much smaller compared to the DIE scenario.With density-dependent emigration prospects of metapopulations survival may thus be much higher compared to a system with density-independent emigration. Consequently, the knowledge about the factors driving emigration may significantly affect our conclusions concerning the conservation status of species.  相似文献   

15.
The amount of genetic structure in marine invertebrates is often thought to be negatively correlated with larval duration. However, larval retention may increase genetic structure in species with long-lived planktonic larvae, and rafting provides a means of dispersal for species that lack a larval dispersal phase. We compared genetic structure, demographic histories and levels of gene flow of regional lineages (in most cases defined by biogeographic region) of five southern African coastal invertebrates with three main types of larval development: (1) dispersal by long-lived planktonic larvae (mudprawn Upogebia africana and brown mussel Perna perna), (2) abbreviated larval development (crown crab Hymenosoma orbiculare) and (3) direct development (estuarine isopod Exosphaeroma hylecoetes and estuarine cumacean Iphinoe truncata). We hypothesized that H. orbiculare, having abbreviated larval development, would employ a strategy of larval retention, resulting in genetic structure comparable to that of the direct developers rather than the planktonic dispersers. However, regional population structure was significantly lower in all species with planktonic larvae, including H. orbiculare, than in the direct developers. Moreover, nested clade analysis identified demographic histories resulting from low levels of gene flow (isolation by distance and allopatric fragmentation) in the direct developers only, and migration rates were significantly higher in all three species having planktonic larvae than in the direct developers. We conclude that the amount of genetic structure within marine biogeographic regions strongly depends on the presence or absence of free-swimming larvae. Whether such larvae are primarily exported or retained, whether they have long or short larval duration, and whether or not they are capable of active dispersal seems to have little effect on connectivity among populations.  相似文献   

16.
A growing number of programs seek to facilitate species conservation using incentive-based mechanisms. Recently, a market-based incentive program for the federally endangered Golden-cheeked Warbler (Dendroica chrysoparia) was implemented on a trial basis at Fort Hood, an Army training post in Texas, USA. Under this program, recovery credits accumulated by Fort Hood through contracts with private landowners are used to offset unintentional loss of breeding habitat of Golden-cheeked Warblers within the installation. Critical to successful implementation of such programs is the ability to value, in terms of changes to overall species viability, both habitat loss and habitat restoration or protection. In this study, we sought to answer two fundamental questions: Given the same amount of change in breeding habitat, does the change in some patches have a greater effect on metapopulation persistence than others? And if so, can characteristics of a patch (e.g., size or spatial location) be used to predict how the metapopulation will respond to these changes? To answer these questions, we describe an approach for using sensitivity analysis of a metapopulation projection model to predict how changes to specific habitat patches would affect species viability. We used a stochastic, discrete-time projection model based on stage-specific estimates of survival and fecundity, as well as various assumptions about dispersal among populations. To assess a particular patch's leverage, we quantified how much metapopulation viability was expected to change in response to changing the size of that patch. We then related original patch size and distance from the largest patch to each patch's leverage to determine if general patch characteristics could be used to develop guidelines for valuing changes to patches within a metapopulation. We found that both the characteristic that best predicted patch leverage and the magnitude of the relationship changed under different model scenarios. Thus, we were unable to find a consistent set of relationships, and therefore we emphasize the dangers in relying on general guidelines to assess patch value. Instead, we provide an approach that can be used to quantitatively evaluate patch value and identify critical needs for future research.  相似文献   

17.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   

18.
Spatial structure and dynamics of multiple populations may explain species distribution patterns in patchy communities with heterogeneous disturbance regimes, especially when species have poor dispersal. The endemic-rich Florida (U.S.A.) rosemary scrub occupies about 4% of the west portion of Archbold Biological Station and occurs scattered within a matrix of less xeric vegetation. Longer fire-return times and higher frequency of open patches in rosemary scrub provide favorable habitat for many plant species. Occupancy of 123 species of vascular plants and ground lichens in 89 patches was determined by repeated site surveys. About two-thirds of the species occurring at more than 14 patches had a significant logistic regression of presence on time-since-fire, patch size, patch isolation, or their interactions. Species with presence related to the interaction between patch isolation and patch size were primarily herbs and small shrubs specializing in rosemary scrub. These results suggest the importance of spatial characteristics of the landscape for population turnover of these species. An incidence-based metapopulation model was used to predict extinction and colonization probabilities of those species with presence in rosemary scrub patches related to the studied spatial variables. This is the first attempt to apply incidence-based metapopulation models to plants. The results showed stronger effects of patch size and patch isolation on extinction probabilities of herbs than on those of woody species. Because of their effect on spatial heterogeneity and habitat availability, fire suppression and habitat destruction may decrease persistence probabilities for these rosemary scrub specialists, many of which are endangered species.  相似文献   

19.
Wilcox C  Cairns BJ  Possingham HP 《Ecology》2006,87(4):855-863
Classical metapopulation theory assumes a static landscape. However, empirical evidence indicates many metapopulations are driven by habitat succession and disturbance. We develop a stochastic metapopulation model, incorporating habitat disturbance and recovery, coupled with patch colonization and extinction, to investigate the effect of habitat dynamics on persistence. We discover that habitat dynamics play a fundamental role in metapopulation dynamics. The mean number of suitable habitat patches is not adequate for characterizing the dynamics of the metapopulation. For a fixed mean number of suitable patches, we discover that the details of how disturbance affects patches and how patches recover influences metapopulation dynamics in a fundamental way. Moreover, metapopulation persistence is dependent not only on the average lifetime of a patch, but also on the variance in patch lifetime and the synchrony in patch dynamics that results from disturbance. Finally, there is an interaction between the habitat and metapopulation dynamics, for instance declining metapopulations react differently to habitat dynamics than expanding metapopulations. We close, emphasizing the importance of using performance measures appropriate to stochastic systems when evaluating their behavior, such as the probability distribution of the state of the metapopulation, conditional on it being extant (i.e., the quasistationary distribution).  相似文献   

20.
The establishment of marine protected areas (MPAs) is a critical step in ensuring the continued persistence of marine biodiversity. Although the area protected in MPAs is growing, the movement of individuals (or larvae) among MPAs, termed connectivity, has only recently been included as an objective of many MPAs. As such, assessing connectivity is often neglected or oversimplified in the planning process. For promoting population persistence, it is important to ensure that protected areas in a system are functionally connected through dispersal or adult movement. We devised a multi-species model of larval dispersal for the Australian marine environment to evaluate how much local scale connectivity is protected in MPAs and determine whether the extensive system of MPAs truly functions as a network. We focused on non-migratory species with simplified larval behaviors (i.e., passive larval dispersal) (e.g., no explicit vertical migration) as an illustration. Of all the MPAs analyzed (approximately 2.7 million km2), outside the Great Barrier Reef and Ningaloo Reef, <50% of MPAs (46-80% of total MPA area depending on the species considered) were functionally connected. Our results suggest that Australia's MPA system cannot be referred to as a single network, but rather a collection of numerous smaller networks delineated by natural breaks in the connectivity of reef habitat. Depending on the dispersal capacity of the taxa of interest, there may be between 25 and 47 individual ecological networks distributed across the Australian marine environment. The need to first assess the underlying natural connectivity of a study system prior to implementing new MPAs represents a key research priority for strategically enlarging MPA networks. Our findings highlight the benefits of integrating multi-species connectivity into conservation planning to identify opportunities to better incorporate connectivity into the design of MPA systems and thus to increase their capacity to support long-term, sustainable biodiversity outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号