首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metacommunity theory allows predictions about the dynamics of potentially interacting species' assemblages that are linked by dispersal, but strong empirical tests of the theory are rare. We analyzed the metacommunity dynamics of Florida rosemary scrub, a patchily distributed pyrogenic community, to test predictions about turnover rates, community nestedness, and responses to patch size, arrangement, and quality. We collected occurrence data for 45 plant species from 88 rosemary scrub patches in 1989 and 2005 and used growth form, mechanism of regeneration after fire, and degree of habitat specialization to categorize species by life history. We tested whether patch size, fire history, and structural connectivity (a measure of proximity and size of surrounding patches) could be used to predict apparent extinctions and colonizations. In addition, we tested the accuracy of incidence-function models built with the patch survey data from 1989. After fire local extinction rates were higher for herbs than woody plants, higher for species that regenerated only from seed than species able to resprout, and higher for generalist than specialist species. Fewer rosemary specialists and a higher proportion of habitat generalists were extirpated on recently burned patches than on patches not burned between 1989 and 2005. Nestedness was highest for specialists among all life-history groups. Estimated model parameters from 1989 predicted the observed (1989-2005) extinction rates and the number of patches with persistent populations of individual species. These results indicate that species with different life-history strategies within the same metacommunity can have substantially different responses to patch configuration and quality. Real metacommunities may not conform to certain assumptions of simple models, but incidence-function models that consider only patch size, configuration, and quality can have significant predictive accuracy.  相似文献   

2.
Abstract: Habitat fragmentation and the division of populations into spatially separated units have led to the increasing use of metapopulation models to characterize these populations. One prominent model that has served as a heuristic tool was introduced by Levins and is based on a collection of simplifying assumptions that exclude information on the dynamics and spatial distribution of local populations. Levins's and similar models predict the proportion of occupied habitat patches at equilibrium and the conditions needed to avoid total extinction. There are many obvious concerns about using such models, including how realistic alterations might change the predictions and whether occupancy has any relationship to population-level processes. Although many of the assumptions of these simple models are known to be unrealistic, we do not know how the assumptions affect model predictions. We simulated a metapopulation, and our results show that assumptions such as homogeneity of habitat patches, random migration among patches, equivalent extinction probabilities in all patches, and a large number of patches can lead to large overestimations of habitat occupancy. But when we explicitly modeled the underlying population dynamics within each patch, we found (1) that there was a strong correlation between proportion of occupied patches and total metapopulation size and (2) that the distribution of individuals among patches was relatively insensitive to model assumptions. Thus, our results show that although realistic modifications will change model predictions for occupancy, occupancy and population trends will be correlated. These correlations between occupancy and population size suggest that occupancy models may have some utility in conservation applications.  相似文献   

3.
Wilcox C  Cairns BJ  Possingham HP 《Ecology》2006,87(4):855-863
Classical metapopulation theory assumes a static landscape. However, empirical evidence indicates many metapopulations are driven by habitat succession and disturbance. We develop a stochastic metapopulation model, incorporating habitat disturbance and recovery, coupled with patch colonization and extinction, to investigate the effect of habitat dynamics on persistence. We discover that habitat dynamics play a fundamental role in metapopulation dynamics. The mean number of suitable habitat patches is not adequate for characterizing the dynamics of the metapopulation. For a fixed mean number of suitable patches, we discover that the details of how disturbance affects patches and how patches recover influences metapopulation dynamics in a fundamental way. Moreover, metapopulation persistence is dependent not only on the average lifetime of a patch, but also on the variance in patch lifetime and the synchrony in patch dynamics that results from disturbance. Finally, there is an interaction between the habitat and metapopulation dynamics, for instance declining metapopulations react differently to habitat dynamics than expanding metapopulations. We close, emphasizing the importance of using performance measures appropriate to stochastic systems when evaluating their behavior, such as the probability distribution of the state of the metapopulation, conditional on it being extant (i.e., the quasistationary distribution).  相似文献   

4.
This paper presents a metapopulation study of the bush cricket, Metrioptera bicolor , living in a recently fragmented landscape. The species inhabits grass and heathland patches of varying area and isolation. Analyses are made of how these geometrical factors affect local population size and density, distribution pattern, and the probability of local extinction and colonization. The proportion of available patches occupied varied between 72 and 79% during 1985–1990. Unoccupied patches were smaller and more isolated than those that were occupied. Patches where populations became extinct during this period were smaller than those with persisting populations. Since local population size was well correlated with patch area, it was clear that stochastic extinctions only occurred in small populations. Critical patch size for population extinction was approximately half a hectare. Colonized patches were less isolated than those that had not been colonized. Critical inter-patch distance for colonization was about 100 meters. The turnover was restricted to an identifiable share of the available patches. Only 33% of the patches were so small that extinction due to stochastic causes could be considered highly probable. This metapopulation will therefore most likely persist over a considerable period in its present spatial structure. There are apparent threats of further fragmentation, however, and nothing is known about the likelihood of large-scale extinctions resulting from extremely unfavorable weather conditions. Nevertheless, our results show that it is appropriate to include geometrical factors in metapopulation models.  相似文献   

5.
A key question facing conservation biologists is whether declines in species' distributions are keeping pace with landscape change, or whether current distributions overestimate probabilities of future persistence. We use metapopulations of the marsh fritillary butterfly Euphydryas aurinia in the United Kingdom as a model system to test for extinction debt in a declining species. We derive parameters for a metapopulation model (incidence function model, IFM) using information from a 625-km2 landscape where habitat patch occupancy, colonization, and extinction rates for E. aurinia depend on patch connectivity, area, and quality. We then show that habitat networks in six extant metapopulations in 16-km2 squares were larger, had longer modeled persistence times (using IFM), and higher metapopulation capacity (lambdaM) than six extinct metapopulations. However, there was a > 99% chance that one or more of the six extant metapopulations would go extinct in 100 years in the absence of further habitat loss. For 11 out of 12 networks, minimum areas of habitat needed for 95% persistence of metapopulation simulations after 100 years ranged from 80 to 142 ha (approximately 5-9% of land area), depending on the spatial location of habitat. The area of habitat exceeded the estimated minimum viable metapopulation size (MVM) in only two of the six extant metapopulations, and even then by only 20%. The remaining four extant networks were expected to suffer extinction in 15-126 years. MVM was consistently estimated as approximately 5% of land area based on a sensitivity analysis of IFM parameters and was reduced only marginally (to approximately 4%) by modeling the potential impact of long-distance colonization over wider landscapes. The results suggest a widespread extinction debt among extant metapopulations of a declining species, necessitating conservation management or reserve designation even in apparent strongholds. For threatened species, metapopulation modeling is a potential means to identify landscapes near to extinction thresholds, to which conservation measures can be targeted for the best chance of success.  相似文献   

6.
Spatial Structure and Population Extinction: A Study with Drosophila Flies   总被引:2,自引:0,他引:2  
Abstract: The total amount of habitat and also its distribution and subdivision affect the extinction probability of a resident population Two species of Drosophila are studied in spatial configurations of a single large habitat patch, single small habitat patches, and two small but connected habitat patches in which a low rate of migration, roughly one fly per generation, is possible. The single large habitat patch shows the lowest extinction rate lower than the combined rate of two small patches of the same total size. For one of the species, the "corridor" between the pair of small patches seems to produce a "rescue effect" that lowers extinction rates, probably due to a decrease in the coefficient of variation in fluctuations of the population sire in this coupled system. The systems seem to have been influenced by demographic stochasticity, based on the relationship of population size to extinction probability.  相似文献   

7.
Despite extensive research on the effects of habitat fragmentation, the ecological mechanisms underlying colonization and extinction processes are poorly known, but knowledge of these mechanisms is essential to understanding the distribution and persistence of populations in fragmented habitats. We examined these mechanisms through multiseason occupancy models that elucidated patch-occupancy dynamics of Middle Spotted Woodpeckers (Dendrocopos medius) in northwestern Spain. The number of occupied patches was relatively stable from 2000 to 2010 (15-24% of 101 patches occupied every year) because extinction was balanced by recolonization. Larger and higher quality patches (i.e., higher density of oaks >37 cm dbh [diameter at breast height]) were more likely to be occupied. Habitat quality (i.e., density of large oaks) explained more variation in patch colonization and extinction than did patch size and connectivity, which were both weakly associated with probabilities of turnover. Patches of higher quality were more likely to be colonized than patches of lower quality. Populations in high-quality patches were less likely to become extinct. In addition, extinction in a patch was strongly associated with local population size but not with patch size, which means the latter may not be a good surrogate of population size in assessments of extinction probability. Our results suggest that habitat quality may be a primary driver of patch-occupancy dynamics and may increase the accuracy of models of population survival. We encourage comparisons of competing models that assess occupancy, colonization, and extinction probabilities in a single analytical framework (e.g., dynamic occupancy models) so as to shed light on the association of habitat quality and patch geometry with colonization and extinction processes in different settings and species.  相似文献   

8.
Altermatt F  Ebert D 《Ecology》2010,91(10):2975-2982
Migration is the key process to understand the dynamics and persistence of a metapopulation. Many metapopulation models assume a positive correlation between habitat patch size or stability and the number of emigrants. However, few empirical data exist, and habitat patch size and habitat stability may affect dispersal differently than they affect local persistence. Here, we studied the production of the migration stage (i.e., resting eggs called ephippia) of the cladoceran Daphnia magna in a metapopulation consisting of 530 rock pool habitat patches over 25 years. Earlier, the functioning of this metapopulation was explained with a Levins-type metapopulation model or with a mainland-island metapopulation model, based on local extinction and colonization data or time series data, respectively. We used pool volume, hydroperiod length, and number of desiccation events to calculate per-pool production of ephippia (i.e., migration stages). We estimated that populations in small and ephemeral habitat patches produced more than half of the 250 000 to 1 million ephippia that were produced in the metapopulation as a whole per year between 1982 and 2006. Furthermore, these small populations contributed approximately 90% of the ephippia exposed during desiccation events, while the contribution of the long-lived populations in large pools was minimal. We term this an "inverse mainland-island" type metapopulation and propose that populations in small, ephemeral habitat patches may also be the driving force for metapopulation dynamics in other systems.  相似文献   

9.
《Ecological modelling》2005,183(4):411-423
Habitat fragmentation can decrease local population persistence by reducing connectivity, which is a function of dispersal of individuals among habitat fragments. Dispersal is often treated as diffusion in population models, even though for many species it is a result of a series of behavioral decisions. We developed a metapopulation model to explore the potential importance of dispersal behaviors in driving metapopulation dynamics. We incorporated types of behavior that affect dispersal—colonization inhibiting, colonization enhancing, extinction inhibiting, extinction enhancing, rescue enhancing, rescue inhibiting—into Levins’ (1969) metapopulation model and projected occupancy rates for a variety of parameter values. Examples from the literature of behaviors associated with each of these parameters are provided. Our model simplifies into previously published metapopulation models that incorporate only a single behavior, and we present a density-dependent rescue function that leads to multiple non-zero equilibria. We found a variety of behavioral effects on metapopulations. Rescue enhancement fills patches faster than does colonization enhancement or extinction inhibition, and declines in patch occupancy are moderate with extinction enhancement, but colonization inhibition causes metapopulation extinction. We also found that with colonization and extinction inhibitions, equilibrium patch occupancy is inversely related to patch turnover rate. With density-dependent rescue, persistence depends not only on the strength of the strong rescue effect, but also on having a sufficient initial fraction of patches occupied; the stronger the rescue effect, the lower this fraction can be. This study suggests that dispersal behavior can have strong influences on metapopulation dynamics. It confirms the importance of understanding the relationship between landscape structure and dispersal behavior in understanding population persistence.  相似文献   

10.
Habitat loss is the principal threat to species. How much habitat remains—and how quickly it is shrinking—are implicitly included in the way the International Union for Conservation of Nature determines a species’ risk of extinction. Many endangered species have habitats that are also fragmented to different extents. Thus, ideally, fragmentation should be quantified in a standard way in risk assessments. Although mapping fragmentation from satellite imagery is easy, efficient techniques for relating maps of remaining habitat to extinction risk are few. Purely spatial metrics from landscape ecology are hard to interpret and do not address extinction directly. Spatially explicit metapopulation models link fragmentation to extinction risk, but standard models work only at small scales. Counterintuitively, these models predict that a species in a large, contiguous habitat will fare worse than one in 2 tiny patches. This occurs because although the species in the large, contiguous habitat has a low probability of extinction, recolonization cannot occur if there are no other patches to provide colonists for a rescue effect. For 4 ecologically comparable bird species of the North Central American highland forests, we devised metapopulation models with area‐weighted self‐colonization terms; this reflected repopulation of a patch from a remnant of individuals that survived an adverse event. Use of this term gives extra weight to a patch in its own rescue effect. Species assigned least risk status were comparable in long‐term extinction risk with those ranked as threatened. This finding suggests that fragmentation has had a substantial negative effect on them that is not accounted for in their Red List category. Estimación del Riesgo de Extinción Mediante Modelos Metapoblacionales de Fragmentación a Gran Escala  相似文献   

11.
A growing number of programs seek to facilitate species conservation using incentive-based mechanisms. Recently, a market-based incentive program for the federally endangered Golden-cheeked Warbler (Dendroica chrysoparia) was implemented on a trial basis at Fort Hood, an Army training post in Texas, USA. Under this program, recovery credits accumulated by Fort Hood through contracts with private landowners are used to offset unintentional loss of breeding habitat of Golden-cheeked Warblers within the installation. Critical to successful implementation of such programs is the ability to value, in terms of changes to overall species viability, both habitat loss and habitat restoration or protection. In this study, we sought to answer two fundamental questions: Given the same amount of change in breeding habitat, does the change in some patches have a greater effect on metapopulation persistence than others? And if so, can characteristics of a patch (e.g., size or spatial location) be used to predict how the metapopulation will respond to these changes? To answer these questions, we describe an approach for using sensitivity analysis of a metapopulation projection model to predict how changes to specific habitat patches would affect species viability. We used a stochastic, discrete-time projection model based on stage-specific estimates of survival and fecundity, as well as various assumptions about dispersal among populations. To assess a particular patch's leverage, we quantified how much metapopulation viability was expected to change in response to changing the size of that patch. We then related original patch size and distance from the largest patch to each patch's leverage to determine if general patch characteristics could be used to develop guidelines for valuing changes to patches within a metapopulation. We found that both the characteristic that best predicted patch leverage and the magnitude of the relationship changed under different model scenarios. Thus, we were unable to find a consistent set of relationships, and therefore we emphasize the dangers in relying on general guidelines to assess patch value. Instead, we provide an approach that can be used to quantitatively evaluate patch value and identify critical needs for future research.  相似文献   

12.
Extinction and metapopulation theories emphasize that stochastic fluctuations in local populations cause extinction and that local extinctions generate empty habitat patches that are then available for recolonization. Metapopulation persistence depends on the balance of extinction and colonization in a static environment. For many rare and declining species, I argue (1) that extinction is usually the deterministic consequence of the local environment becoming unsuitable (through habitat loss or modification, introduction of a predator, etc.); (2) that the local environment usually remains unsuitable following local extinction, so extinctions only rarely generate empty patches of suitable habitat; and (3) that colonization usually follows improvement of the local environment for a particular species (or long-distance transfer by humans). Thus, persistence depends predominantly on whether organisms are able to track the shifting spatial mosaic of suitable environmental conditions or on maintainance of good conditions locally.  相似文献   

13.
The effects of patch size and isolation on metapopulation dynamics have received wide empirical support and theoretical formalization. By contrast, the effects of patch quality seem largely underinvestigated, partly due to technical difficulties in properly assessing quality. Here we combine habitat-quality modeling with four years of demographic monitoring in a metapopulation of greater white-toothed shrews (Crocidura russula) to investigate the role of patch quality on metapopulation processes. Together, local patch quality and connectivity significantly enhanced local population sizes and occupancy rates (R2 = 14% and 19%, respectively). Accounting for the quality of patches connected to the focal one and acting as potential sources improved slightly the model explanatory power for local population sizes, pointing to significant source-sink dynamics. Local habitat quality, in interaction with connectivity, also increased colonization rate (R2 = 28%), suggesting the ability of immigrants to target high-quality patches. Overall, patterns were best explained when assuming a mean dispersal distance of 800 m, a realistic value for the species under study. Our results thus provide evidence that patch quality, in interaction with connectivity, may affect major demographic processes.  相似文献   

14.
Biogeographic theory predicts that rare species occur more often in larger, less‐isolated habitat patches and suggests that patch size and connectivity are positive predictors of patch quality for conservation. However, in areas substantially modified by humans, rare species may be relegated to the most isolated patches. We used data from plant surveys of 81 meadow patches in the Georgia Basin of Canada and the United States to show that presence of threatened and endangered plants was positively predicted for patches that were isolated on small islands surrounded by ocean and for patches that were isolated by surrounding forest. Neither patch size nor connectivity were positive predictors of rare species occurrence. Thus, in our study area, human influence, presumably due to disturbance or introduction of competitive non‐native species, appears to have overwhelmed classical predictors of rare species distribution, such that greater patch isolation appeared to favor presence of rare species. We suggest conservation planners consider the potential advantages of protecting geographically isolated patches in human‐modified landscapes because such patches may represent the only habitats in which rare species are likely to persist. Influencia Humana y Predictores Biogeográficos Clásicos de la Ocurrencia de Especies Raras  相似文献   

15.
16.
Habitat fragmentation is expected to impose strong selective pressures on dispersal rates. However, evolutionary responses of dispersal are not self-evident, since various selection pressures act in opposite directions. Here we disentangled the components of dispersal behavior in a metapopulation context using the Virtual Migration model, and we linked their variation to habitat fragmentation in the specialist butterfly Proclossiana eunomia. Our study provided a nearly unique opportunity to study how habitat fragmentation modifies dispersal at the landscape scale, as opposed to microlandscapes or simulation studies. Indeed, we studied the same species in four landscapes with various habitat fragmentation levels, in which large amounts of field data were collected and analyzed using similar methodologies. We showed the existence of quantitative variations in dispersal behavior correlated with increased fragmentation. Dispersal propensity from habitat patches (for a given patch size), and mortality during dispersal (for a given patch connectivity) were lower in more fragmented landscapes. We suggest that these were the consequences of two different evolutionary responses of dispersal behavior at the individual level: (1) when fragmentation increased, the reluctance of individuals to cross habitat patch boundaries also increased; (2) when individuals dispersed, they flew straighter in the matrix, which is the best strategy to improve dispersal success. Such evolutionary responses could generate complex nonlinear patterns of dispersal changes at the metapopulation level according to habitat fragmentation. Due to the small size and increased isolation of habitat patches in fragmented landscapes, overall emigration rate and mortality during dispersal remained high. As a consequence, successful dispersal at the metapopulation scale remained limited. Therefore, to what extent the selection of individuals with a lower dispersal propensity and a higher survival during dispersal is able to limit detrimental effects of habitat fragmentation on dispersal success is unknown, and any conclusion that metapopulations would compensate for them is flawed.  相似文献   

17.
Abstract: Application of metapopulation models is becoming increasingly widespread in the conservation of species in fragmented landscapes. We provide one of the first detailed comparisons of two of the most common modeling techniques, incidence function models and stage-based matrix models, and test their accuracy in predicting patch occupancy for a real metapopulation. We measured patch occupancies and demographic rates for regional populations of the Florida scrub lizard (   Sceloporus woodi ) and compared the observed occupancies with those predicted by each model. Both modeling strategies predicted patch occupancies with good accuracy ( 77–80%) and gave similar results when we compared hypothetical management scenarios involving removal of key habitat patches and degradation of habitat quality. To compare the two modeling approaches over a broader set of conditions, we simulated metapopulation dynamics for 150 artificial landscapes composed of equal-sized patches (2–1024 ha) spaced at equal distances (50–750 m). Differences in predicted patch occupancy were small to moderate (<20%) for about 74% of all simulations, but 22% of the landscapes had differences openface> 50%. Incidence function models and stage-based matrix models differ in their approaches, assumptions, and requirements for empirical data, and our findings provide evidence that the two models can produce different results. We encourage researchers to use both techniques and further examine potential differences in model output. The feasibility of obtaining data for population modeling varies widely among species and limits the modeling approaches appropriate for each species. Understanding different modeling approaches will become increasingly important as conservation programs undertake the challenge of managing for multiple species in a landscape context.  相似文献   

18.
J.V. Ross 《Ecological modelling》2010,221(21):2515-2520
We present two ‘rules of thumb’ for metapopulation management. The first identifies an explicit formula for the persistence time of the population, and thus enables the population manager to form a priority species ranking by identifying those species most at risk of extinction. The second identifies an optimal management strategy that gives direction on how to alter the colonisation rate (creation or improvement of habitat corridors) and local extinction rate (restoring habitat quality or expanding habitat) in order to maximise the persistence time under a budgetary constraint. We employ a simple stochastic version of Levins (1969) metapopulation model, which is first calibrated to a more realistic spatial model. Our rules are tested on computer-generated patch networks and a model for malleefowl (Leipoa ocellata) in the Bakara region of South Australia.  相似文献   

19.
A Habitat-Based Metapopulation Model of the California Gnatcatcher   总被引:5,自引:0,他引:5  
We present an analysis of the metapopulation dynamics of the federally threatened coastal California Gnatcatcher (Polioptila c. californica) for an approximately 850 km2 region of Orange County, California. We developed and validated a habitat suitability model for this species using data on topography, vegetation, and locations of gnatcatcher pair observations. Using this habitat model, we calculated the spatial structure of the metapopulation, including size and location of habitat patches and the distances among them. We used data based on field studies to estimate parameters such as survival, fecundity, dispersal, and catastrophes, and combined these parameters with the spatial structure to build a stage-structured, stochastic, spatially-explicit metapopulation model. The model predicted a fast decline and high risk of population extinction with most combinations of parameters. Results were most sensitive to density-dependent effects, the probability of weather-related catastrophes, adult survival, and adult fecundity. Based on data used in the model, the greatest difference in results was given when the simulation's time horizon was only a few decades, suggesting that modeling based on longer or shorter time horizons may underestimate the effects of alternative management actions.  相似文献   

20.
Abstract: We investigated the persistence of three medium-sized (2–9 kg), rare forest mammals in the fragmented mist-belt Podocarpus forests of the midlands of KwaZulu-Natal Province, South Africa. We recorded patch occupancy of blue duiker (   Philantomba monticola ), tree hyrax (   Dendrohyrax arboreus ), and samango monkey ( Cercopithecus mitis labiatus ) in 199 forest patches. Their rarity is ascribed to the fragmentation and destruction of their forest habitat. Incidence functions, derived from presence and absence data, were formulated as generalized linear models, and environmental effects were included in the fitted logistic models. The small and mostly solitary hyrax and duiker persisted in smaller patches than the large and social monkey. Although this result follows expectations based on relative home-range sizes of each species, the incidence probability of the samango monkey was invariant with increasing isolation, whereas a gradual decrease with increasing isolation was observed for the hyrax and duiker. Group dynamics may inhibit dispersal and increase the isolation effect in social species such as samango monkeys. A mainland-island metapopulation model adequately describes patterns of patch occupancy by the hyrax and duiker, but the monkeys' poor dispersal ability and obvious area-dependent extirpation suggest that they exist in transient, nonequilibrium (declining) metapopulations. Through identification of large forest patches for careful protection and management, the survival of all three species—especially the monkey—could be prolonged. Because no functional metapopulation may exist for the monkey, however, this is an emergency measure. For the duiker and hyrax, larger patches should form part of a network of smaller and closer patches in a natural matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号