首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
丛枝菌根对盐胁迫的响应及其与宿主植物的互作   总被引:1,自引:0,他引:1  
金樑  陈国良  赵银  王晓娟 《生态环境》2007,16(1):228-233
丛枝菌根真菌(Arbuscular Mycorrhizae Fungi,AMF)作为陆地生态系统的组成部分之一,在促进宿主植物对土壤养分和水分的吸收、提高植物生物量生产、调节种群和群落的结构、维持生态系统的稳定性等方面发挥了重要作用。其中,盐渍化是自然生态系统中广泛存在的一种胁迫生境条件,全球盐渍化土地约占耕地总面积的10%,因而探讨AM菌根在此胁迫生境下对宿主植物生长的影响具有重要意义。从以下几个方面,围绕盐胁迫条件、AM菌根和宿主植物三者之间的关系对当前国际上相关领域的研究进展进行了综述:1)AM真菌对盐胁迫的响应,包括菌根共生体形成、菌根侵染率、AM真菌的分布、菌丝体生长发育、孢子的形成和分布等;2)盐胁迫条件下AM菌根对宿主植物的效应,包括AM菌根促进宿主植物对P、N等元素的吸收、降低植物体内Na 的含量、提高光合作用能力,进而提高植物的生物量和对植物的群落结构产生影响等;3)AM菌根提高宿主植物耐盐性的机理,分别从植物根系形态的改变、水分吸收能力的加强、细胞内营养物质的平衡,以及细胞生理代谢的调节等方面对AM菌根促进植物抗盐性的机理进行了剖析。  相似文献   

2.
Kiers ET  van der Heijden MG 《Ecology》2006,87(7):1627-1636
The 450-million-year-old symbiosis between the majority of land plants and arbuscular mycorrhizal fungi (AMF) is one of the most ancient, abundant, and ecologically important mutualisms on Earth. Yet, the evolutionary stability of mycorrhizal associations is still poorly understood, as it follows none of the constraints thought to stabilize cooperation in other well-known mutualisms. The capacity of both host and symbiont to simultaneously interact with several partners introduces a unique dilemma; detecting and punishing those exploiting the mutualism becomes increasingly difficult if these individuals can continue to access resources from alternative sources. Here, we explore four hypotheses to explain evolutionary cooperation in the arbuscular mycorrhizal symbiosis: (1) pseudo-vertical transmission and spatial structuring of plant and fungal populations leading to local adaptation of partners; (2) luxury resource exchange in which plants trade surplus carbon for excess fungal nutrients; (3) partner choice allowing partners to associate with better cooperators; and (4) host and symbiont sanctions which actively reward good partners and punish less cooperative ones. We propose that mycorrhizal cooperation is promoted by an exchange of surplus resources between partners and enforced through sanctions by one or both partners. These mechanisms may allow plant and fungal genotypes to discriminate against individuals employing exploitative strategies, promoting patterns of partner choice. Together these selection pressures provide a framework for understanding the stabilization of mycorrhizal cooperation over evolutionary time.  相似文献   

3.
Seep Mytilid Ia (SMIa), an undescribed mussel found at hydrocarbon seeps in the Gulf of Mexico, harbors intracellular methanotrophic symbionts. Two techniques were used to address the hypothesis that host digestion of symbionts is a significant mechanism of carbon transfer from symbiont to host in the SMIa association: lysosomal enzyme cytochemistry and 14C tissue autoradiography. Acid phosphatase activity was consistently localized in the Golgi apparatus and associated vesicles of gill cells, but was detected around bacteria in only three of approximately 50 bacteriocytes examined. These results indicate that the cellular equipment necessary for lysosomal digestion of symbionts is present in host bacteriocytes, but that acid phosphatase activity in symbiont vacuoles is rare at a given point in time. Tissue autoradiography was conducted with mussels collected in September 1992 to document carbon fixation by symbionts and follow the time course of transfer to host tissues. No asymbiotic host cell type showed a significant increase in relative grain density until at least 1 d after the end of incubation with 14C-methane. The ratio of label in the basal portion of bacteriocytes to total bacteriocyte label did not show a significant increase until 10 d after the end of the incubation period, indicating a slow increase of labeled carbon in the putative residual bodies, containing the remnants of lysosomal digestion. These results are consistent with the hypothesis that host digestion of symbionts is one route of nutrient acquisition in SMIa. Intracellular methanotrophic bacteria were found outside of the gill in SMIa juveniles, in mantle and foot epithelial tissues previously believed to be symbiont-free. These extra-gill symbionts and their host cells are morphologically similar to their gill counterparts and, like the gill symbionts, actively fix carbon from methane. Received: 29 March 1997 / Accepted: 12 May 1997  相似文献   

4.
Riftia pachyptila, the giant vestimentiferan tubeworm from the East Pacific Rise, harbors abundant chemolithoautotrophic, sulfide-oxidizing bacteria in an internal organ, the trophosome. Several facts, such as the lack of a digestive system in the host, stable carbon isotope values and net carbon dioxide uptake all suggest that the tubeworms obtain the bulk of their nutrition from their symbionts. Using tissue autoradiography, we investigated the mode of nutritional transfer between symbionts and host, and the site of early incorporation of symbiont fixed-carbon in the host. Fast labeling in the trophosome clearly demonstrates that the symbionts are the primary site of carbon fixation. Appearance of label in some symbiont-free host tissues in as little as 15 min indicates that the symbionts release a significant amount of organic carbon immediately after fixation. The organic carbon is largely incorporated into specific, metabolically active host tissues such as fast-growing body regions in the trunk and plume, and into tube-secreting glands. In addition to immediate release of fixed carbon by the symbionts, there is evidence of a second possible nutritional mode, digestion of the symbionts, which is consistent with previous suggestions based on trophosome ultrastructure. Results suggest that symbiont-containing host cells migrate in a predictable pattern within trophosome lobules and that symbiont division occurs predominately in the center of a lobule, followed eventually by autolysis/digestion at the periphery of the lobule. Received: 1 July 1999 / Accepted: 30 December 1999  相似文献   

5.
P. Hallock 《Marine Biology》1981,62(4):249-255
Host and algal symbion growth can be described by an iterative model which incorporates utilization efficiencies of host and symbiont. This model predicts that, with input of organic matter to the host and at very low host and algal utilization efficiences coupled with efficient recycling of nutrients between the host and symbionts, production of organic matter by the system can be increased by 2–3 orders of magnitude over that of a system comprised of only autotrophs and heterotrophs. Energy available for growth and respiration by the host is 1–2 orders of magnitude over that available to a heterotroph without symbionts. Algal symbiosis is highly advantageous in oligotrophic environments where radiant energy is abundant, growth-limiting nutrients are scarce and only concentrated in organic matter, and much energy must be expended to capture that organic matter.  相似文献   

6.
One of the challenges to quantifying the costs and benefits of symbiosis is that symbionts can influence different components of host fitness. To improve understanding of the ecology of inherited symbionts, we developed general theory for a perennial host-hereditary symbiont interaction, in which symbionts can have independent and potentially opposing effects on host regeneration and survival. The model showed that negative effects on one component of fitness may be outweighed by positive effects on another, leading to a net positive impact of symbiosis on population growth. Model predictions depended on the availability of suitable patches, which influenced the relative contributions of survival vs. regeneration to host fitness. We then used experimental symbiont removal to quantify effects of a hereditary, fungal endophyte on a grass host. Endophyte presence strongly reduced host survival but increased regeneration. Application of the model revealed that negative effects on plant survival were overwhelmed by beneficial effects on regeneration, resulting in stable endophyte persistence at 100% frequency, consistent with field observations. Our work demonstrates the utility of a demographic perspective for predicting the dynamics of symbioses and supports the hypothesis that symbionts function as mutualists when host and symbiont fitness are coupled through vertical transmission.  相似文献   

7.
We measured the relationship between symbiont diversity, nutritional potential, and symbiotic success in the cnidarian–dinoflagellate symbiosis, by infecting aposymbiotic (i.e. symbiont-free) specimens of the model sea anemone Aiptasia sp. with a range of Symbiodinium types. Four cultured heterologous Symbiodinium types (i.e. originally isolated from other host species) were used, plus both cultured and freshly isolated homologous zooxanthellae (i.e. from Aiptasia sp.). Rates of photosynthesis, respiration, and symbiont growth were measured during symbiosis establishment and used to estimate the contribution of the zooxanthellae to the animal’s respiratory carbon demands (CZAR). Anemones containing Symbiodinium B1 (both homologous and heterologous) tended to attain higher CZAR values and hence benefit most from their symbiotic partners. This was despite Symbiodinium B1 not achieving the highest cell densities, though it did grow more quickly during the earliest stages of the infection process. Rather, the heterologous Symbiodinium types A1.4, E2, and F5.1 attained the highest densities, with populations of E2 and F5.1 also exhibiting the highest photosynthetic rates. This apparent success was countered, however, by very high rates of symbiosis respiration that ultimately resulted in lower CZAR values. This study highlights the impact of symbiont type on the functionality and autotrophic potential of the symbiosis. Most interestingly, it suggests that certain heterologous symbionts may behave opportunistically, proliferating rapidly but in a manner that is energetically costly to the host. Such negative host–symbiont interactions may contribute to the host–symbiont specificity seen in cnidarian–dinoflagellate symbioses and potentially limit the potential for partner switching as an adaptive mechanism.  相似文献   

8.
菌根是土壤真菌与植物根系形成的共生体,存在于绝大多数植物(90%)的根系和生境中。菌根共有7种类型,在生态系统的过程和功能方面都扮演着十分重要的角色。为了增强对菌根在森林生态系统中重要功能的理解,文章基于全球森林数据库,在全球尺度上研究了不同菌根类型对森林树木净初级生产力(NPP)的影响。结果表明,森林树木NPP随菌根类型的不同而不同,AM类型菌根森林的NPP[679.49 g.m-2.a-1(以C计)]要显著高于含ECM类型菌根的森林[479.00 g.m-2.a-1(以C计)];菌根类型的不同对森林树木地上和地下及其各组分NPP的影响和贡献也存在着显著的不同,AM类型菌根对地下NPP的贡献要高于ECM菌根,而ECM菌根对地上NPP的贡献则较大。菌根类型对地上、地下NPP组分的影响分析则表明,AM类型的菌根对树叶和细根NPP的贡献较大,而ECM类型菌根则对树木主干和枝NPP的贡献较大。可见,森林树木总体NPP及其各组分NPP都随着菌根类型的不同而存在显著的差异。  相似文献   

9.
桑树(Morus alba)可与丛枝菌根(AM)真菌形成互利共生体,丛枝菌根真菌能对桑树的重金属元素吸收产生积极的响应。然而,这种响应随环境条件的变化而有所不同。贵州荔波和黄平两地种植养蚕桑树,提高桑叶质量对养蚕业具有重要意义。荔波和黄平两地均处于喀斯特地区,土壤pH因石灰岩和砂岩交叉分布而有所差异。本文将揭示土壤因素是如何影响桑树与丛枝菌根真菌互利共生体的形成从而影响桑树对重金属元素的吸收。实验结果表明,荔波桑地平均土壤 pH (4.92±1.03)明显低于黄平(5.96±1.08)。土壤酸性直接影响 AM 真菌的分布,荔波的偏酸性土壤环境有利于真菌生长,且有利于桑树与丛枝菌根真菌共生关系的形成。此外,偏酸性土壤条件有利于增加重金属元素的生物可利用性,从而加强植物体对重金属元素的吸收,包括有毒元素 Cd。与黄平相比,生长在荔波的桑树叶片具有较高含量的重金属元素。荔波桑树叶片中的糖类含量明显低于黄平的,分别为(67±27)mg·g-1、(105±57)mg·g-1;而荔波桑树根系中的糖类含量明显高于黄平,分别为(125±43)mg·g-1、(91±43)mg·g-1。该结果说明,与黄平(具有较高的土壤pH)相比,荔波(具有较低的土壤pH)桑树叶片中的光合作用产物将更多地被输入到桑树的根系中。真菌是专性共生物,如果没有植物所供给的光合产物,真菌就不能生存。根系分泌物的另一个重要作用是溶解重金属,使它们具有较强的移动能力,以便被宿主植物所吸收。这就解释了为什么在较低土壤pH环境条件下生长的桑树的叶片含有较高含量的重金属元素。因此,菌根植物根系的分泌作用是一个非常重要的过程。尽管桑树具有耐干旱贫瘠的能力,且能够适应于喀斯特环境,但桑树喜好的是环境仍是偏酸性且养分充足的土壤。  相似文献   

10.
Hobbie EA 《Ecology》2006,87(3):563-569
Ectomycorrhizal fungi form symbioses with most temperate and boreal tree species, but difficulties in measuring carbon allocation to these symbionts have prevented the assessment of their importance in forest ecosystems. Here, I surveyed allocation patterns in 14 culture studies and five field studies of ectomycorrhizal plants. In culture studies, allocation to ectomycorrhizal fungi (NPPf) was linearly related to total belowground net primary production (NPPb) by the equation NPPf = 41.5% x NPPb - 11.3% (r2 = 0.55, P < 0.001) and ranged from 1% to 21% of total net primary production. As a percentage of NPP, allocation to ectomycorrhizal fungi was highest at lowest plant growth rates and lowest nutrient availabilities. Because total belowground allocation can be estimated using carbon balance techniques, these relationships should allow ecologists to incorporate mycorrhizal fungi into existing ecosystem models. In field studies, allocation to ectomycorrhizal fungi ranged from 0% to 22% of total allocation, but wide differences in measurement techniques made intercomparisons difficult. Techniques such as fungal in-growth cores, root branching-order studies, and isotopic analyses could refine our estimates of turnover rates of fine roots, mycorrhizae, and extraradical hyphae. Together with ecosystem modeling, such techniques could soon provide good estimates of the relative importance of root vs. fungal allocation in belowground carbon budgets.  相似文献   

11.
Symbioses between dinoflagellates in the genus Symbiodinium (commonly referred to as zooxanthellae) and scleractinian corals are an essential feature for the maintenance of coral reefs. The fine-scale diversity and population structure of the zooxanthellae inhabiting the coral Pocillopora meandrina, a major reef building species in Polynesia, was examined. We used two polymorphic microsatellites to study seven populations from the South Pacific, whose host structuring has been previously investigated. The symbionts of P. meandrina showed high levels of diversity, with more than one zooxanthella genotype being identified in most of the host individuals. Genetic differentiation between symbiont populations was detected at a large scale (2,000 km) between the Tonga and the Society Archipelagos. Within the Society Archipelago, the two most remote populations (Tahiti and Bora-Bora; 200 km apart) were only weakly differentiated from each other. Statistical tests demonstrated that the symbiont genetic structure was not correlated with that of its host, suggesting that dispersal of the symbionts, whether they are transported within a host larva or free in the water, depends mainly on distance and water currents. In addition, the data suggests that hosts may acquire new symbionts after maternal transmission, possibly following a disturbance event. Lastly, the weak differentiation between symbiont populations of P. verrucosa and P. meandrina, both from Moorea, indicated that there was some host-symbiont fine-scale specificity detectable at the genetic resolution offered by microsatellites.  相似文献   

12.
Davis TS  Hofstetter RW 《Ecology》2012,93(2):421-429
Many herbivores consume microbial food sources in addition to plant tissues for nutrition. Despite the ubiquity of herbivore-microbe feeding associations, few studies examine how host plant phenotypes affect microbial symbionts of herbivores. We tested the hypothesis that chemical polymorphism in a plant population mediates the performance of nutritional microbial symbionts. We surveyed the composition of ponderosa pine resin in northern Arizona, USA, for variation in six monoterpenes, and we approximated four chemical phenotypes. We reared populations of an herbivorous tree-killing beetle (Dendroctonus brevicomis) in ponderosa pine host material, controlling for three monoterpene compositions representing an alpha-pinene to delta-3-carene gradient. Beetles were reared in host material where the dominant monoterpene was alpha-pinene, delta-3-carene, or a phenotype that was intermediate between the two. We isolated nutritional fungal symbionts (Entomocorticium sp. B) from beetle populations reared in each phenotype and performed reciprocal growth experiments in media amended to represent four "average" monoterpene compositions. This allowed us to test the effects of natal host phenotype, chemical polymorphism, and the interaction between natal host phenotype and chemical polymorphism on a nutritional symbiont. Three important findings emerged: (1) fungal isolates grew 25-32% faster when acquired from beetles reared in the intermediate phenotype; (2) the mean growth rate of nutritional fungi varied up to 44% depending on which monoterpene composition media was amended with; and (3) fungal isolates uniformly performed best in the intermediate phenotype regardless of the chemical composition of their natal host. The performance of nutritional fungi related to both the chemical "history" of their associated herbivore and the chemical phenotypes they are exposed to. However, all fungal isolates appeared adapted to a common chemical phenotype. These experiments argue in favor of the hypothesis that chemical polymorphism in plant populations mediates growth of nutritional symbionts of herbivores. Intraspecific chemical polymorphism in plants contributes indirectly to the regulation of herbivore populations, and our experiments demonstrate that the ecological effects of plant secondary chemistry extend beyond the trophic scale of the herbivore-plant interaction.  相似文献   

13.
This study examined the capacity for photoprotection and repair of photo-inactivated photosystem II in the same Symbiodinium clade associated with two coexisting coral species during high-light stress in order to test for the modulation of the symbiont’s photobiological response by the coral host. After 4 days exposure to in situ irradiance, symbionts of the bleaching-sensitive Pocillopora damicornis showed rapid synthesis of photoprotective pigments (by 44 %) and strongly enhanced rates of xanthophyll cycling (by 446 %) while being insufficient to prevent photoinhibition (sustained loss in F v/F m at night) and loss of symbionts after 4 days. By contrast, Pavona decussata showed no significant changes in F v/F m, symbiont density or xanthophyll cycling. Given the association with the same Symbiodinium clade in both coral species, our findings suggest that symbionts in the two species examined may experience different in hospite light conditions as a result of different biometric properties of the coral host.  相似文献   

14.
菌根真菌侵染对植物生物量累积的影响   总被引:2,自引:0,他引:2  
童琳  唐旭利  张静  张倩媚 《生态环境》2014,(9):1520-1525
为了从生态系统尺度探讨菌根资源与植物生物量累积的关系,调查了鼎湖山不同成熟度的三个森林群落主要优势树种的菌根侵染情况.综合分析各森林群落优势树种的个体数、生物量和菌根侵染率发现:1)菌根侵染率与径向生长速率相关,植物生长迅速的阶段菌根侵染率更高.中径级(胸径15-30 cm)的马尾松(Pinus massoniana)和锥(Castanopsis chinensis)的侵染率比小径级(胸径1-15 cm)个体的侵染率高,而大径级个体(胸径30 cm 以上)的侵染率略低于中径级个体的侵染率.木荷(Schima superba)则表现出侵染率随着胸径增大而增高的趋势.2)树种在群落内的侵染率越高,其对群落生物量的贡献率越大.如马尾松在马尾松林和混交林的侵染率分别为(77.30±18.02)%和(40.50±14.42)%,其对马尾松林群落生物量的贡献率达到87.43%,是对混交林生物量贡献率(17.51%)的5 倍.混交林和阔叶林的共有优势树种锥的侵染率和生物量贡献率也有存在相同规律.3)根系碳储量占群落总碳储量比例较高的群落其优势树种平均侵染率相对较高.马尾松林、混交林和季风常绿阔叶林中,根系碳储量占群落总碳储量的比例分别为55%、54%、42%,群落优势树种平均侵染率分别为(66.73±10.55)%、(46.97±27.28)%、(54.22±25.45)%,马尾松林的根系碳储量和平均侵染率均高于混交林和季风常绿阔叶林.以上结果表明,菌根真菌侵染对于植物个体生长速率以及群落水平的生物量累积具有-定的促进作用.  相似文献   

15.
The establishment of symbiosis in early developmental stages is important for reef-building corals because of the need for photosynthetically derived nutrition. Corals spawn eggs and sperm, or brood planula larvae and shed them into the water. Some coral eggs or planulae directly inherit symbiotic dinoflagellates (Symbiodinium spp.) from their parents, while others acquire them at each generation. In most species examined to date, the larvae without dinoflagellates (aposymbiotic larvae) can acquire symbionts during the larval stage, but little is known regarding the timing and detailed process of the onset of symbiosis. We examined larval uptake of symbiotic dinoflagellates in nine species of scleractinian corals, the onset of symbiosis through the early larval stages, and the distribution pattern of symbionts within the larval host, while living and with histology, of two acroporid corals under laboratory conditions. The larvae acquired symbiotic dinoflagellates during the planktonic phase in all corals examined which included Acropora digitifera, A. florida, A. intermedia, A. tenuis, Isopora palifera, Favia pallida, F. lizardensis, Pseudosiderastrea tayamai, and Ctenactis echinata. The larvae of A. digitifera and A. tenuis first acquired symbionts 6 and 5 days after fertilization, respectively. In A. digitifera larvae, this coincided with the formation of an oral pore and coelenteron. The number of symbiotic dinoflagellates increased over the experimental periods in both species. To test the hypothesis that nutrients promotes symbiotic uptake, the number of incorporated dinoflagellates was compared in the presence and absence of homogenized Artemia sp. A likelihood ratio test assuming a log-linear model indicated that Artemia sp. had a significantly positive effect on symbiont acquisition. These results suggest that the acquisition of symbiotic dinoflagellates during larval stages is in common with many coral species, and that the development of both a mouth and coelenteron play important roles in symbiont acquisition.  相似文献   

16.
Evidence for host assimilation of 14C-labeled symbiont photosynthates is presented from laboratory studies of the solitary radiolarian Thalassicolla nucleata and the colonial species Collosphaera huxleyi. The amount of 14C-labeled product assimilated in the central capsule of T. nucleata is directly related to the amount of 14C incorporated by the symbionts. In C. huxleyi central capsules, the percentage of 14C-label occurring in the water-soluble fraction is 38% and in the lipid-soluble fraction is 20%, the remainder being in insoluble products. Within the lipid-soluble fraction, a substantial percentage of the 14C activity is associated with the triglyceride and wax ester fractions. The significance of these findings is discussed in relation to the possible physiological role of symbionts in sustaining the host and stabilizing the host-symbiont association.  相似文献   

17.
A community ecology approach to the study of the most common group of zooxanthellae, dinoflagellates in the genus Symbiodinium, was applied to symbiotic invertebrate assemblages on coral reefs in the western Caribbean, off the Yucatan peninsula (Puerto Morelos, Mexico) and over 1000 km away in the northeastern Caribbean, at Lee Stocking Island, Bahamas. Sequence differences and intragenomic variation, as determined by denaturing gradient gel electrophoresis and sequencing of the internal transcribed spacer 2 (ITS 2) region, were used to classify these symbionts. Twenty-eight genetically distinct Symbiodinium types were identified, eleven of which were found in hosts from both Caribbean locations. A single symbiont population was detected in 72% of hosts from the Yucatan and 92% of hosts from the Bahamas. The reef-wide community distribution of these symbionts is dominated by a few types found in many different host taxa, while numerous rare types appear to have high specificity for a particular host species or genus. Clade or lineage A Symbiodinium spp. was restricted to compatible hosts located within 3-4 m of the surface, while Symbiodinium spp. types from other lineages displayed differences in vertical zonation correlated with ITS type but were independent of clade designation. A comparison of the symbiont types found in field-collected hosts with types previously cultured from these hosts indicates the existence of low density or "background"-symbiont populations and cryptic, potentially non-mutualistic types in some hosts.  相似文献   

18.
Rudgers JA  Holah J  Orr SP  Clay K 《Ecology》2007,88(1):18-25
Microbial symbionts can affect plant nutrition, defensive chemistry, and biodiversity. Here we test the hypothesis that symbionts alter the speed and direction of plant succession in communities that are shifting from grasslands to forests. A widespread C3 grass introduced to the United States, Lolium arundinaceum (tall fescue), hosts a fungal endophyte that is toxic to herbivores. In replicated experimental grasslands, the presence of the endophyte in tall fescue reduced tree abundance and size, altered tree composition, and slowed plant species turnover. In addition, consumption of tree seedlings by voles (Microtus spp.) was 65% higher in plots with the endophyte at the one grassland site where these data were collected. Despite its negligible contribution to community biomass, a microbial symbiont suppressed tree establishment, posing an important constraint on the natural transition from grasslands to forests.  相似文献   

19.
The obligate symbiotic relationship between dinoflagellates, Symbiodinium spp. and reef building corals is re-established each host generation. The solitary coral Fungia scutaria Lamarck 1801 harbors a single algal strain, Symbiodinium ITS2 type C1f (homologous strain) during adulthood. Previous studies have shown that distinct algal ITS2 types in clade C correlate with F. scutariaSymbiodinium specificity during the onset of symbiosis in the larval stage. The present study examined the early specificity events in the onset of symbiosis between F. scutaria larvae and Symbiodinium spp., by looking at the temporal and spatial infection dynamics of larvae challenged with different symbiont types. The results show that specificity at the onset of symbiosis was mediated by recognition events during the initial symbiont—host physical contact before phagocytosis, and by subsequent cellular events after the symbionts were incorporated into host cells. Moreover, homologous and heterologous Symbiodinium sp. strains did not exhibit the same pattern of localization within larvae. When larvae were infected with homologous symbionts (C1f), ~70% of the total acquired algae were found in the equatorial area of the larvae, between the oral and aboral ends, 21 h after inoculation. In contrast, no spatial difference in algal localization was observed in larvae infected with heterologous symbionts. This result provides evidence of functional differences among gastrodermal cells, during development of the larvae. The cells in the larval equator function as nutritive phagocytes, and also appear to function as a region of enhanced symbiont acquisition in F. scutaria.  相似文献   

20.
It is an ongoing challenge to develop and demonstrate management practices that increase the sustainability of agricultural systems. Soil carbon and nitrogen dynamics directly affect soil quality, crop productivity and environmental impacts. Root systems are central to the acquisition of water and nutrients by plants, but are also a major pathway for the inputs of carbon and nutrients to soil. The complexity of both biotic and abiotic interactions, combined with stochastic changes in root architecture, makes it difficult to understand below-ground dynamics on the basis of experimentation alone. The integration of dynamic models of above-ground growth, three-dimensional root system demography, and interactions between plants and the environment, into one single model is a major challenge because of the complexity of the systems.In order to understand the interaction between a plant and the environment, it is advantageous to develop a model framework to integrate submodels that simulate various plant and environmental components. The objective of this paper is to outline a mechanistic and process-based model, which is capable of simulating interactions among environmental conditions around plants, plant growth and development, nitrogen and carbon cycles, with a three-dimensional root system submodel as an interface.The model presented in this paper is a mixed dimensional, multi-layer, field scale, weather-driven and daily time-step dynamic simulation model. The current version includes a plant growth and development component, a nitrogen cycling component, a carbon cycling component, plus a soil water component that includes representation of water flow to field drains as well as downwards through the soil layers, together with a heat transfer component. The components themselves and linkage among components are designed using object-oriented techniques, which makes the model robust, understandable and reusable. The components are implemented in the C++ programming language, and inputs and outputs of all components are organised as a database in either Microsoft® SQL Server 2000, Access 2000 or MySQL5.0. Root architecture is visualised by using the OpenGL graphics system. Preliminary validation with two separate experimental datasets shows that the model can reasonably simulate root systems, nitrogen cycling, water movement and plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号