首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用连续分级浸取法对黄河内蒙古段6个表层沉积物样品中离子交换态氮(IEF-N)、碳酸盐结合态氮(CF-N)、铁锰氧化态氮(IMOF-N)和有机态与硫化物结合态氮(OSF-N)等4种形态氮含量进行测定。同时结合表层沉积物中总氮(TN)含量及沉积物理化性质,探讨了不同形态氮分布特征及影响因素。结果表明:1)黄河表层沉积物6个采样点的秋季TN含量为127.28~654.77 mg/kg,平均含量为291.46 mg/kg。夏季TN含量为196.00~1 034.6 mg/kg,平均含量为421.75 mg/kg。2)黄河表层沉积物各形态氮之间存在显著相关关系,各形态氮含量大小依次为:OSF-N>IMOF-N>IEF-N>CF-N,与各形态氮含量占总可转化态氮(TTN)百分含量大小趋势一致。3)沉积物各形态氮含量都存在明显的季节性变化,呈秋高夏低的趋势。4)各形态氮含量与沉积物TOC和ECE间相关性较好,在P<0.01和P<0.05水平上显著正相关。上覆水体TP、TN、COD和NH+4-N不同程度上都对各形态氮含量产生影响。  相似文献   

2.
海州湾表层沉积物中氮的赋存形态及其生态意义   总被引:8,自引:1,他引:7  
于2014年10月在海州湾采集表层沉积物,利用分级浸取分离的方法,对其中的离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)及强氧化剂可浸取态氮(SOEF-N)4种可转化态氮(TTN)的含量进行了分析测定,结合沉积物的有机质含量(TOC)、粒度分布,讨论了各形态氮的生态意义.结果表明:IEF-N、WAEF-N、SAEF-N、SOEF-N、非转化态氮(NTN)、总氮(TN)的平均含量分别为12.63、5.78、8.93、85.32、568.93和681.59 mg·kg-1;各形态氮在TTN中所占的比例大小顺序为SOEF-N(75.73%)IEF-N(11.21%)SAEF-N(7.93%)WAEF-N(5.13%).研究还表明,沉积物中TN与TOC和粒径具有显著的相关性(p0.01);WAEF-N与TOC具有显著的相关性(p0.01),与粒径也具有显著相关性(p0.05),其他形态氮与TOC、粒度分布均有一定程度的相关关系;各形态氮与水体中的溶解态无机氮(DIN)、叶绿素a具有相关性,说明沉积物中的氮对海洋生态环境有着重要意义.  相似文献   

3.
城市内河表层沉积物氮形态及影响因素   总被引:5,自引:0,他引:5       下载免费PDF全文
采用连续分级提取法对许昌市清潩河河道10个表层沉积物样品中氮形态含量进行测定, 分别得到离子交换态氮(IEF-N)、弱酸可提取态氮(WAEF-N)、强碱可提取态氮(SAEF-N)、强氧化剂可提取态氮(SOEF-N)和非可转化态氮(NTN), 探讨了不同形态氮分布特征、影响因素及其对河道水环境潜在的风险. 结果表明,沉积物中总氮(TN)含量为2140~9470mg/kg, 与沉积物有机质含量沿河道变化趋势基本一致; 可转化态氮(TTN)的优势形态从上游至下游逐渐由IEF-N向SAEF-N再向SOEF-N转化, 逐渐趋于稳定; IEF-N含量受沉积物有机质、pH值及上覆水体氨氮和悬浮物含量影响, 且与TN极显著相关, 说明清潩河沉积物TN含量可以作为河道内源污染风险判断的重要指标; 此外上覆水体较高的COD含量对SAEF-N和NTN的沉积、较高的氨氮含量对IEF-N和TN的释放以及总磷含量对NTN活性的增强等都产生影响.因此, 在开展清潩河水环境综合整治时, 需考虑水相与沉积物相的相互作用, 同步开展治理工作.  相似文献   

4.
采用连续分级提取法对许昌市清潩河河道10个表层沉积物样品中氮形态含量进行测定,分别得到离子交换态氮(IEF-N)、弱酸可提取态氮(WAEF-N)、强碱可提取态氮(SAEF-N)、强氧化剂可提取态氮(SOEF-N)和非可转化态氮(NTN),探讨了不同形态氮分布特征、影响因素及其对河道水环境潜在的风险.结果表明,沉积物中总氮(TN)含量为2140~9470mg/kg,与沉积物有机质含量沿河道变化趋势基本一致;可转化态氮(TTN)的优势形态从上游至下游逐渐由IEF-N向SAEF-N再向SOEF-N转化,逐渐趋于稳定;IEF-N含量受沉积物有机质、pH值及上覆水体氨氮和悬浮物含量影响,且与TN极显著相关,说明清潩河沉积物TN含量可以作为河道内源污染风险判断的重要指标;此外上覆水体较高的COD含量对SAEF-N和NTN的沉积、较高的氨氮含量对IEF-N和TN的释放以及总磷含量对NTN活性的增强等都产生影响.因此,在开展清潩河水环境综合整治时,需考虑水相与沉积物相的相互作用,同步开展治理工作.  相似文献   

5.
为了解北方高盐景观水体沉积物中不同形态氮的分布特征及影响因素,以天津清净湖为研究对象,采用逐级分离浸取法对其表层沉积物中各形态氮进行监测。结果表明:1)表层沉积物中ω(TN)为698.1~1 450.0 mg/kg,平均值为1 214.5 mg/kg,属于中度污染水平,可转化态氮(TTN)为TN主要赋存形态,占TN的比例为61.2%~83.1%,潜在释放风险较大;2)沉积物中各形态TTN含量大小顺序为:ω(SOEF-N)>ω(SAEF-N)>ω(IEF-N)>ω(WAEF-N);3)相关性分析表明:TN与SOEF-N、TTN与SAEF-N之间呈显著相关,具有相同的生物地球化学行为;沉积物电导率(EC)与TN、TTN、含水率及LOI均显著相关,说明高盐景观水体表层沉积物氮形态与盐度有关。  相似文献   

6.
选取不同高程鄱阳湖表层沉积物,通过研究其总可转化态氮与各形态可转化态氮含量及分布特征,试图揭示江湖关系变化导致的水位变化对鄱阳湖沉积物氮潜在释放风险的影响.结果表明:1鄱阳湖表层沉积物总氮(TN)含量在389~3 865 mg·kg-1之间,空间分布上呈"五河"入湖尾闾区湖心区北部湖区的趋势;总可交换态氮含量在319.36~904.56 mg·kg-1之间,占TN的52%,空间分布趋势与TN相同;2鄱阳湖3个湖区沉积物各形态可转化态氮的含量大小排列次序均为:SOEF-N(强氧化剂可提取态氮)≈SAEF-N(强碱可提取态氮)WAEF-N(弱酸可提取态氮)IEF-N(离子交换态氮);3江湖关系变化致使鄱阳湖枯水期沉积物出露时间提前并且延长,进而导致不同高程沉积物可转化态氮(TTN)含量差异明显,3个湖区沉积物可转化态氮含量均表现为枯水期丰水期,高程越高,由于其沉积物出露时间较长,可转化态氮含量较高,即可转化态氮含量12 m~13 m高程沉积物11 m~12 m高程沉积物10m~11 m高程沉积物;4随着高程的增加,沉积物各形态可转化态氮含量都呈现增加的趋势,其中SAEF-N和WAEFN含量及其占总可转化态氮的比例变化幅度较小,而IEF-N和SOEF-N含量以及其占总可转化态氮比例的增幅均较为显著.如果江湖关系进一步变化,枯水期水位继续下降,势必会引起沉积物出露面积增大及出露时间延长,从而导致沉积物TN、可转化态氮以及释放风险较高的氮形态IEF-N和SOEF-N含量的增大,来年丰水期可能会增加鄱阳湖沉积物氮释放风险.  相似文献   

7.
白洋淀冰封期沉积物中氮赋存形态及分布特征   总被引:3,自引:3,他引:0       下载免费PDF全文
为研究白洋淀冰封期沉积物中氮的赋存形态及分布特征,初步探究氮素演变规律,于2019年1月采集白洋淀北部、中部、南部淀区的表层沉积物,采用氮连续分级浸提方法,将沉积物中的氮分为离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N)。结果表明:白洋淀冰封期沉积物总可转化态氮含量为3415. 256~5683. 580 mg/kg,平均值为4439. 975 mg/kg;空间分布上存在明显的差异,并呈现中部淀区>南部淀区>北部淀区的趋势,其中位于中部淀区的文化苑采样点总可转化态氮的含量最高,这主要与淀区不同的生态功能有关。3个分区中沉积物各形态氮的含量顺序均为WAEF-N>SOEF-N>SAEF-N>IEF-N,表明白洋淀沉积物受沉积环境和有机质等多重因素的影响。总之,白洋淀沉积物在冰封期较高的总可转化态氮含量和氮形态组成显示出底泥沉积物接纳了大量的可溶性污染物成为内源污染源,可能会在冰封稳定期、融冰期后的一段时间增加白洋淀氮释放风险。  相似文献   

8.
烟台四十里湾柱状沉积物氮形态地球化学特征   总被引:6,自引:2,他引:4  
杨玉玮  高学鲁  李培苗 《环境科学》2012,33(10):3449-3456
采用连续浸取法首次对烟台四十里湾柱状沉积物不同形态的氮进行分离,并对其垂直地球化学特征和影响因素进行分析研究.可转化态氮分为离子交换态氮(IEF-N)、弱酸浸取态氮(WAEF-N)、强碱浸取态氮(SAEF-N)、强氧化剂浸取态氮(SOEF-N).结果表明,在沉积物表层(0~10 cm)可转化态氮占总氮的26.14%,并随着深度的增加而含量降低.各形态氮占可转化态氮比例平均大小顺序为SOEF-N(89.7%)>IEF-N(7.97%)>WAEF-N(1.19%)>SAEF-N(1.14%),说明SOEF-N是可转化态氮中的绝对优势态.不同形态氮与沉积物地球化学参数之间的相关关系分析表明,沉积物含水率、总有机碳、pH值、氧化还原电位、粒度组成等因素在一定程度上影响各形态氮含量,但各站位柱状样因其沉积物特征不同受各参数影响程度也不同.  相似文献   

9.
本文以昌黎黄金海岸自然保护区海域沉积物为研究对象,分析保护区海域各位点沉积物中氮的赋存形态分布状况与中值粒径、有机质的相关性。结果表明:保护区海域沉积物的总氮(TN,total nitrogen)含量在180.13×10-6~966.00×10-6之间,平均值为638.15×10-6;其中非转化态氮(NTN,non-transformed nitrogen)含量在75.82×10-6~856.28×10-6之间,真正参与地球化学循环的可转化态氮(TTN,transferable total nitrogen)含量在104.31×10-6~165.12×10-6之间。各浸取态氮所占TN比例大小为弱酸可浸取态氮(WAEF-N,weak acid exchangeable form,61.69%)>强氧化剂可浸取态氮(SOEF-N,strong oxidant exchangeable form,20.38%)>离子交换态氮(IEF-N,ion exchangeable form,15.40%)>强碱可浸取态氮(SAEF-N,strong alkali exchangeable form,2.53%)。沉积物氮的分布特征主要与陆源营养盐的输入、洋流流向及海洋水动力条件等因素有关;沉积物中有机质含量、粒径分布对各浸取态氮含量的分布影响不大。对比已有统计数据,该保护区海域范围内沉积物基本没有污染状况的发生。  相似文献   

10.
为探究梯级水库运行对河流沉积物氮形态时空分布的影响,分别在枯水期和汛期对澜沧江和怒江沿程表层沉积物进行跟踪监测,并利用分级连续浸取分离法得到了离子可交换态氮(IEF-N),弱酸可浸取态氮(WAEF-N),强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N)等四种沉积物氮形态.结果表明:(1)怒江和澜沧江自然河流段可转化态氮(TTN)含量略低于水库段,沿程分布含量范围512.2~1548.5mg/L,同时期4种可转化态氮形态分布规律基本一致,枯水期SOEF-N>WAEF-N>SAEF-N>IEF-N,含量范围分别为486.6~1424.8,3.3~83.1,1.4~88.8和1.2~10.7mg/kg;汛期WAEF-N>SOEF-N>SAEF-N>IEF-N,含量范围分别为360.7~755.7,42.8~656.2,6.8~394.3和35.8~153.6mg/kg;(2)梯级水库运行导致有机质富集,颗粒物粒径变小,对WAEF-N的释放有抑制作用;梯级水库运行导致水库段沉积物粒径变小,而SOEF-N主要分布在细颗粒中,致使沉积物的矿化作...  相似文献   

11.
东湖沉积物中氮磷形态分布的研究   总被引:14,自引:3,他引:11  
孟春红  赵冰 《环境科学》2008,29(7):1831-1837
武汉东湖是具有代表性的城市浅水型湖泊.在2004年采用现场调查、布点检测和实验室化学性质分析等方法,对东湖西南部的子湖--庙湖的沉积物柱芯的氮和磷进行了形态分析,对其垂直剖面分布和季节性变化进行了调查.研究表明,沉积物中氮的赋存特征和变化规律为:总氮平均含量1.62~3.17g/kg,在垂直剖面上表现为随沉积深度的增加而降低的趋势;其含量随季节变化有周期性的规律,春季沉积物中总氮的含量是1 a中最少的,夏季开始增加,秋冬季总氮量达到最大.因受沉积物总氮和埋藏环境的双重影响,沉积物中铵态氮平均含量的季节性变化规律与总氮相似,春季铵态氮的含量最少为117.66mg/kg,夏秋季含量达到最大为216.20mg/kg,冬季稍有减少.沉积物中各形态磷的垂直赋存特征为:在0~10em沉积深度内,总磷(TP)含量0.255~3.36g/kg、不稳态磷(LP)含量0.192~11.00mg/kg、铁结合磷(Fe-P)含量13.47~1379.91mg/kg和铝结合磷(Al-P)含量7.77~317.64mg/kg,均有明显的"表层富积"现象,其含量随深度的增加而迅速减少,通常>10 cm后这些磷形态的含量保持稳定.结果表明,造成湖泊水体富营养化的污染源有外源和内源,当外源截污后,内源沉积物中的营养盐仍可能使湖泊处于富营养化状态;磷仍然是东湖最主要的限制性营养元素,春季湖区沉积物中铁结合磷比例最大,占沉积物TP的44.30%,说明庙湖水域污染程度严重.  相似文献   

12.
洞庭湖沉积物及上覆水体氮的空间分布   总被引:1,自引:0,他引:1  
2009年12月底在洞庭湖全湖20个采样点采样,通过测量该20个沉积物样和对应的20个上覆水样的总氮、氨氮、硝氮浓度和沉积物的含水率,揭示洞庭湖沉积物及其上覆水体氮的空间分布。研究表明:洞庭湖各点位沉积物全氮平均浓度为547.0mg/kg,与滇池、太湖和巢湖相比较低。洞庭湖各分区沉积物氮形态分布比例相差不大,主要形态为有机氮,占全氮的比例达59.9%。洞庭湖各点位沉积物上覆水体总氮平均浓度为2.45mg/L,已经达《地表水环境质量标准》劣V类水体的标准。洞庭湖各分区沉积物上覆水体氮形态分布不一,硝氮所占比例最大,为35.6%。其中东洞庭湖水体主要氮形态为氨氮,西、南洞庭水体主要氮形态为硝氮。造成这种差异的主要原因是东西洞庭湖的人类生活方式以及城市、工业发展水平的不同。  相似文献   

13.
为探讨太湖附泥藻类时空分析及与N、P等环境因子之间的关系,在不同季节采取太湖不同湖区表层沉积物,采用常规理化分析方法测定环境中的氮、磷含量及其他理化指标,利用高效液相色谱技术(HPLC)分析附泥藻类光合色素叶绿素a(Chl.a)、叶绿素b(Chl.b)、岩藻黄素(Fuco)及玉米黄素(Zea)含量。结果表明:太湖水体及表层沉积物N、P浓度空间差异明显,水体中TN、TP及总溶解性磷均表现为梅梁湾>贡湖湾>胥口湾,且空间差异显著(P<0.05),而胥口湾表层沉积物中TP及Fe-P含量显著低于梅梁湾及贡湖湾(P<0.05)。太湖附泥藻类生物量(Chl.a)及3种特征色素含量存在显著的时空差异。从空间上看,Chl.a最高值出现在贡湖湾,其值为(12.79±3.69)μg/g,最低值出现在胥口湾,其值为(2.46±1.14)μg/g。在秋季及夏季,贡湖湾附泥藻类Chl.a及3种特征色素含量高于梅梁湾,梅梁湾又高于胥口湾;在春季,梅梁湾附泥藻类Chl.a高于贡湖湾及胥口湾。从季节上看,附泥藻类Chl.a与特征色素Chl.b变化一致,梅梁湾与胥口湾在春季较高,夏季和秋季相对较...  相似文献   

14.
滴水湖水系中氮的污染特征及其影响因子   总被引:3,自引:0,他引:3  
为探讨滴水湖水系各形态氮的污染特征、不同水体间的各形态氮对比特征、滴水湖水体各形态氮与环境因子的关系, 2013年春季,在上海市最大人工湖水系采集表层水样品28个、沉积物样品22个,测定各形态氮及总氮含量,并通过模拟实验着重探讨滴水湖水体盐度对沉积物向上覆水体释放NH3-N、NO3--N的影响.结果显示,滴水湖水体各氮污染水平较高,表层水体氮的空间差异性相对沉积物中氮的差异性较小.滴水湖水体无机氮以NO3--N为主,沉积物中氮以有机氮为主.周围水系含氮量较高,其中引入水源氮是滴水湖水体中氮的主要来源之一.盐度模拟实验显示,随着上覆水体盐度的增大,底泥中NO3--N的释放量会增加并趋于平衡,NH3-N的释放量则有降低并趋于稳定的趋势.  相似文献   

15.
为探究梯级水库建设对沉积物氮形态分布的影响,通过分级浸取方法得到沉积物的离子交换态氮(IEF-N)、弱酸提取态氮(WAEF-N)、强碱提取态氮(SAEF-N)以及强氧化剂提取态氮(SOEF-N),对比研究了有梯级水库建设的澜沧江和干流无水电站建设的怒江沉积物中氮形态的分布特征,分析了可转化态氮的主要影响因素.结果表明,两条流域沉积物赋存环境存在差异,进而使沉积物的理化性质呈现明显的差异,最终导致沉积物可转化态氮的含量及空间分布也不同,澜沧江沉积物可转化态氮的含量高于怒江,且澜沧江的空间变化也大于怒江,怒江IEF-N、WAEF-N、SAEF-N与SOEF-N含量范围分别为1.56~2.55,16.91~46.42,1.83~10.66,486.61~719.27mg/kg,澜沧江IEF-N、WAEF-N、SAEF-N与SOEF-N含量范围分别为1.55~14.35,20.77~83.08,1.36~92.15,562.61~1404.82mg/kg.两条河流的可转化态氮含量大小排列顺序一致,均为SOEF-N > WAEF-N > SAEF-N > IEF-N,怒江与澜沧江上游自然河段可转化态氮含量及空间分布基本一致,但在澜沧江的梯级水库段上,4种可转化态氮空间分布特征发生了较明显的变化,产生这种现象的原因主要是水库的建设导致了沉积物理化性质的改变,总有机碳、粒度、氧化还原电位对可转化态氮的影响不同.  相似文献   

16.
徐爽  刘存歧  董梦荟  刘莎  李博 《环境科学学报》2013,33(12):3317-3323
2011—2012年期间,以白洋淀8个国控监测点为采样点,通过对水体和沉积物碱性磷酸酶活性(APA)和理化参数的分析,揭示了白洋淀碱性磷酸酶活性时空分布特征及影响因素.结果表明,白洋淀碱性磷酸酶活性具有明显的时空分布规律,春季碱性磷酸酶活性增大,夏秋季达最高值,冬季最低,富营养化程度高的样点碱性磷酸酶活性较高.相关性分析结果表明,水体碱性磷酸酶活性与氨氮和氮磷比显著负相关(p<0.05),与温度、总磷、浮游植物密度显著正相关(p<0.01).推测浮游植物密度可能是影响水体碱性磷酸酶活性的主要因素;沉积物中碱性磷酸酶活性可能主要与微生物相关,与沉积物总磷含量显著正相关(p<0.05).水体和沉积物中碱性磷酸酶活性与采样点富营养化程度一致,可以作为白洋淀富营养化的评价指标.  相似文献   

17.
采用实时荧光定量PCR (qPCR)技术,测定了武汉东湖沉积物中氨氧化古菌(AOA)和氨氧化细菌(AOB)氨单加氧酶基因(amoA)的丰度,并结合沉积物水体环境中各形态氮素的含量,分析氮素含量对AOA和AOB的时空分布的影响.结果显示,AOA amoA基因丰度大于AOB amoA基因丰度,表明AOA对氨氧化过程的贡献较大.同时,AOA和AOB amoA基因丰度都随深度增加而降低.此外,间隙水的总氮、氨氮、硝酸盐氮以及亚硝酸盐氮浓度分别为6.28~33.56、2.71~22.7、0.12~0.98、0.01~0.13mg/L;上覆水的总氮、氨氮、硝酸盐氮以及亚硝酸盐氮平均浓度分别为1.68,0.79,0.16,0.04mg/L;表层水的总氮、氨氮、硝酸盐氮以及亚硝酸盐氮平均浓度分别为1.34,0.62,0.11,0.03mg/L,表明东湖东湖沉积物相对于水体呈营养盐可释放状态.相关性分析表明:AOA amoA基因丰度与间隙水氨氮和亚硝酸盐氮浓度呈显著正相关(P<0.05),AOB amoA基因丰度与间隙水亚硝酸盐氮(NO2--N)浓度呈显著正相关(P<0.05).  相似文献   

18.
The regulatory effects of environmental factors on denitrification were studied in the sediments of Meiliang Bay, Taihu Lake, in a monthly sampling campaign over a one-year period. Denitrification rates were measured in slurries of field samples and enrichment experiments using the acetylene inhibition technique. Sediment denitrification rates in inner bay and outer bay ranged from 2.8 to 51.5 nmol N2/(g dw (dry weight)·hr) and from 1.5 to 81.1 nmol N2/(g dw·hr), respectively. Sediment denitrification rates were greatest in the spring and lowest in the summer and early autumn, due primarily to seasonal differences in nitrate concentration and water temperature. For each site, positive and linear relationships were regularly observed between denitrification rate and water columnn itrate concentration. Of various environmental factors on denitrification that we assessed, nitrate was determined to be the key factor limiting denitrification rates in the sediments of Meiliang Bay. In addition, at the two sites denitrification rates were also regulated by temperature. The addition of organic substrates had no significant effect on denitrification rate, indicating that sediment denitrification was not limited by organic carbon availability in the sediments. Nitrate in the water column was depleted during summer and early autumn, and this suppressed effective removal of nitrogen from Taihu Lake by denitrification.  相似文献   

19.
胶州湾沉积物氮的环境生物地球化学意义   总被引:6,自引:1,他引:5  
利用氮的分级浸取技术,研究了胶州湾不同粒级沉积物中氮的赋存形态.研究表明,胶州湾沉积物中可转化态氮可分为离子交换态、弱酸浸取态、强碱浸取态和强氧化剂浸取态.不同粒级沉积物中各形态氮占可转化态氮的比例各不相同.在细、中和粗粒级沉积物中,强氧化剂浸取态氮是可交换态氮的优势形态,分别占可转化氮的35.38%、44.38%和58.69%.在中、粗粒级沉积物中,强碱浸取态氮是无机氮的主要赋存形态,分别占可转化态氮的26.31%和25.85%.在细粒级沉积物中,离子交换态氮是优势态的无机氮,占可转化态氮的27.67%.相关分析表明,对于胶州湾来说,沉积物的粒度越细,氮的含量就越高,各形态氮大致与细、中粒级沉积物含量呈正相关,而与粗粒级沉积物含量呈负相关.研究还表明,不同粒级沉积物中氮与浮游植物数量、叶绿素a以及上覆水体中硝酸盐的含量大致都在一定程度上呈正相关,这一方面说明了沉积物对上覆水体元素的含量有着不可忽视的影响,另一方面也说明了沉积物中的氮对海水的富营养化水平有着较好的指示和十分重要的环境意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号