首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
海州湾表层沉积物中氮的赋存形态及其生态意义   总被引:8,自引:1,他引:7       下载免费PDF全文
于2014年10月在海州湾采集表层沉积物,利用分级浸取分离的方法,对其中的离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)及强氧化剂可浸取态氮(SOEF-N)4种可转化态氮(TTN)的含量进行了分析测定,结合沉积物的有机质含量(TOC)、粒度分布,讨论了各形态氮的生态意义.结果表明:IEF-N、WAEF-N、SAEF-N、SOEF-N、非转化态氮(NTN)、总氮(TN)的平均含量分别为12.63、5.78、8.93、85.32、568.93和681.59 mg·kg-1;各形态氮在TTN中所占的比例大小顺序为SOEF-N(75.73%)IEF-N(11.21%)SAEF-N(7.93%)WAEF-N(5.13%).研究还表明,沉积物中TN与TOC和粒径具有显著的相关性(p0.01);WAEF-N与TOC具有显著的相关性(p0.01),与粒径也具有显著相关性(p0.05),其他形态氮与TOC、粒度分布均有一定程度的相关关系;各形态氮与水体中的溶解态无机氮(DIN)、叶绿素a具有相关性,说明沉积物中的氮对海洋生态环境有着重要意义.  相似文献   

2.
为探究梯级水库建设对沉积物氮形态分布的影响,通过分级浸取方法得到沉积物的离子交换态氮(IEF-N)、弱酸提取态氮(WAEF-N)、强碱提取态氮(SAEF-N)以及强氧化剂提取态氮(SOEF-N),对比研究了有梯级水库建设的澜沧江和干流无水电站建设的怒江沉积物中氮形态的分布特征,分析了可转化态氮的主要影响因素.结果表明,两条流域沉积物赋存环境存在差异,进而使沉积物的理化性质呈现明显的差异,最终导致沉积物可转化态氮的含量及空间分布也不同,澜沧江沉积物可转化态氮的含量高于怒江,且澜沧江的空间变化也大于怒江,怒江IEF-N、WAEF-N、SAEF-N与SOEF-N含量范围分别为1.56~2.55,16.91~46.42,1.83~10.66,486.61~719.27mg/kg,澜沧江IEF-N、WAEF-N、SAEF-N与SOEF-N含量范围分别为1.55~14.35,20.77~83.08,1.36~92.15,562.61~1404.82mg/kg.两条河流的可转化态氮含量大小排列顺序一致,均为SOEF-N > WAEF-N > SAEF-N > IEF-N,怒江与澜沧江上游自然河段可转化态氮含量及空间分布基本一致,但在澜沧江的梯级水库段上,4种可转化态氮空间分布特征发生了较明显的变化,产生这种现象的原因主要是水库的建设导致了沉积物理化性质的改变,总有机碳、粒度、氧化还原电位对可转化态氮的影响不同.  相似文献   

3.
不同污染程度湖泊沉积物中不同粒级可转化态氮分布   总被引:13,自引:4,他引:9  
研究了污染程度不同的五里湖、月湖、东太湖和贡湖不同粒级沉积物中总可转化态氮以及各形态可转化态氮的含量与分布.结果表明:4个湖泊的沉积物各粒级中各形态可转化态氮的含量及其地球化学特征均不相同.强氧化剂可提取态氮(SOEF-N)是释放能力最弱的形态,为可转化态氮的主体,占总可转化态氮的66.97%~87.97%.离子交换态氮(IEF-N)结合能力最弱,是最容易被释放的形态,为可转化态无机氮的主体,占总可转化态氮的7.37%~22.25%.同一粒级中,各形态可转化态氮对氮循环的贡献为SOEF-N最大,IEF-N其次,强碱可浸取态氮(SAEF-N)与弱酸可浸取态氮(WAEF-N)最低.随着沉积物粒级的由粗到细,总可转化态氮以及各形态可转化态氮含量均呈逐渐增加趋势.沉积物细颗粒部分对氮循环的可能贡献占绝对的主体,是粗颗粒部分的几倍到几十倍.相比而言,污染程度轻的贡湖和东太湖沉积物无论总可转化态氮还是各形态可转化态氮,细颗粒部分的相对含量均低于污染程度重的五里湖和月湖沉积物.   相似文献   

4.
滇池沉积物中氮的地球化学特征及其对水环境的影响   总被引:16,自引:1,他引:15       下载免费PDF全文
采用连续分级提取法研究了滇池外海8个典型区域表层沉积物中总氮与生物有效性氮的含量分布特征,并探讨了不同形态氮释放的影响因素及其对水环境潜在的风险.结果表明,沉积物中总氮含量变化为1888.8~3155.8mg/kg,各形态氮的相对比例为残渣态氮(Residual-N,46.2%~66.3%)>强氧化剂可提取态氮(SOEF-N,22.9%~42.9%)>离子可交换态氮(IEF-N,4.5%~7.5%)>弱酸可提取态氮(WAEF-N,2.2%~4.0%)>强碱可提取态氮(SAEF-N,2.7%~3.8%).生物有效性氮包括IEF-N、WAEF-N、SAEF-N和SOEF-N,海埂沉积物中生物有效性氮的含量最高,与该区域的富营养化程度相一致.其中, IEF-N的分布与上覆水体中氮的含量关系密切,SOEF-N是水体中氮的重要来源.另外, NH4+-N是IEF-N、WAEF-N及SAEF-N中的主要组成部分.蓝藻水华严重的海埂沉积物IEF-N中的NH4+-N含量相对较低,可能表明了富营养化湖泊中浮游生物的大量繁殖与沉积物氮循环之间的耦合关系.  相似文献   

5.
选取不同高程鄱阳湖表层沉积物,通过研究其总可转化态氮与各形态可转化态氮含量及分布特征,试图揭示江湖关系变化导致的水位变化对鄱阳湖沉积物氮潜在释放风险的影响.结果表明:1鄱阳湖表层沉积物总氮(TN)含量在389~3 865 mg·kg-1之间,空间分布上呈"五河"入湖尾闾区湖心区北部湖区的趋势;总可交换态氮含量在319.36~904.56 mg·kg-1之间,占TN的52%,空间分布趋势与TN相同;2鄱阳湖3个湖区沉积物各形态可转化态氮的含量大小排列次序均为:SOEF-N(强氧化剂可提取态氮)≈SAEF-N(强碱可提取态氮)WAEF-N(弱酸可提取态氮)IEF-N(离子交换态氮);3江湖关系变化致使鄱阳湖枯水期沉积物出露时间提前并且延长,进而导致不同高程沉积物可转化态氮(TTN)含量差异明显,3个湖区沉积物可转化态氮含量均表现为枯水期丰水期,高程越高,由于其沉积物出露时间较长,可转化态氮含量较高,即可转化态氮含量12 m~13 m高程沉积物11 m~12 m高程沉积物10m~11 m高程沉积物;4随着高程的增加,沉积物各形态可转化态氮含量都呈现增加的趋势,其中SAEF-N和WAEFN含量及其占总可转化态氮的比例变化幅度较小,而IEF-N和SOEF-N含量以及其占总可转化态氮比例的增幅均较为显著.如果江湖关系进一步变化,枯水期水位继续下降,势必会引起沉积物出露面积增大及出露时间延长,从而导致沉积物TN、可转化态氮以及释放风险较高的氮形态IEF-N和SOEF-N含量的增大,来年丰水期可能会增加鄱阳湖沉积物氮释放风险.  相似文献   

6.
为探究梯级水库运行对河流沉积物氮形态时空分布的影响,分别在枯水期和汛期对澜沧江和怒江沿程表层沉积物进行跟踪监测,并利用分级连续浸取分离法得到了离子可交换态氮(IEF-N),弱酸可浸取态氮(WAEF-N),强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N)等四种沉积物氮形态.结果表明:(1)怒江和澜沧江自然河流段可转化态氮(TTN)含量略低于水库段,沿程分布含量范围512.2~1548.5mg/L,同时期4种可转化态氮形态分布规律基本一致,枯水期SOEF-N>WAEF-N>SAEF-N>IEF-N,含量范围分别为486.6~1424.8,3.3~83.1,1.4~88.8和1.2~10.7mg/kg;汛期WAEF-N>SOEF-N>SAEF-N>IEF-N,含量范围分别为360.7~755.7,42.8~656.2,6.8~394.3和35.8~153.6mg/kg;(2)梯级水库运行导致有机质富集,颗粒物粒径变小,对WAEF-N的释放有抑制作用;梯级水库运行导致水库段沉积物粒径变小,而SOEF-N主要分布在细颗粒中,致使沉积物的矿化作...  相似文献   

7.
城市内河表层沉积物氮形态及影响因素   总被引:5,自引:0,他引:5       下载免费PDF全文
采用连续分级提取法对许昌市清潩河河道10个表层沉积物样品中氮形态含量进行测定, 分别得到离子交换态氮(IEF-N)、弱酸可提取态氮(WAEF-N)、强碱可提取态氮(SAEF-N)、强氧化剂可提取态氮(SOEF-N)和非可转化态氮(NTN), 探讨了不同形态氮分布特征、影响因素及其对河道水环境潜在的风险. 结果表明,沉积物中总氮(TN)含量为2140~9470mg/kg, 与沉积物有机质含量沿河道变化趋势基本一致; 可转化态氮(TTN)的优势形态从上游至下游逐渐由IEF-N向SAEF-N再向SOEF-N转化, 逐渐趋于稳定; IEF-N含量受沉积物有机质、pH值及上覆水体氨氮和悬浮物含量影响, 且与TN极显著相关, 说明清潩河沉积物TN含量可以作为河道内源污染风险判断的重要指标; 此外上覆水体较高的COD含量对SAEF-N和NTN的沉积、较高的氨氮含量对IEF-N和TN的释放以及总磷含量对NTN活性的增强等都产生影响.因此, 在开展清潩河水环境综合整治时, 需考虑水相与沉积物相的相互作用, 同步开展治理工作.  相似文献   

8.
采用连续分级提取法对许昌市清潩河河道10个表层沉积物样品中氮形态含量进行测定,分别得到离子交换态氮(IEF-N)、弱酸可提取态氮(WAEF-N)、强碱可提取态氮(SAEF-N)、强氧化剂可提取态氮(SOEF-N)和非可转化态氮(NTN),探讨了不同形态氮分布特征、影响因素及其对河道水环境潜在的风险.结果表明,沉积物中总氮(TN)含量为2140~9470mg/kg,与沉积物有机质含量沿河道变化趋势基本一致;可转化态氮(TTN)的优势形态从上游至下游逐渐由IEF-N向SAEF-N再向SOEF-N转化,逐渐趋于稳定;IEF-N含量受沉积物有机质、pH值及上覆水体氨氮和悬浮物含量影响,且与TN极显著相关,说明清潩河沉积物TN含量可以作为河道内源污染风险判断的重要指标;此外上覆水体较高的COD含量对SAEF-N和NTN的沉积、较高的氨氮含量对IEF-N和TN的释放以及总磷含量对NTN活性的增强等都产生影响.因此,在开展清潩河水环境综合整治时,需考虑水相与沉积物相的相互作用,同步开展治理工作.  相似文献   

9.
为了揭示东部平原骆马湖、高邮湖、滆湖和阳澄湖四个湖泊沉积物中氮的分布特征及其影响因素,采用分级浸取法研究了湖泊表层沉积物中离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)、强氧化剂可浸取态氮(SOEF-N)这四种可转化态氮(TTN)和非转化态氮(NTN)的赋存特征,并结合沉积物粒度、pH值、总有机碳(TOC)和总磷(TP)含量等理化性质,利用多元统计分析了影响各形态氮分布的主要因素.结果表明:四个湖中氮均以TTN为主,且四个湖泊中TTN含量组成均表现为SOEF-N最高,IEF-N最低.沉积物中IEF-N、SOEF-N和NTN的空间分布趋势均与总氮(TN)一致;四种形态TTN的含量均表现为滆湖、阳澄湖高于骆马湖、高邮湖,其中骆马湖中各氮形态空间变化最大,主要与该湖中水生植物分布不均和大量采砂活动有关.IEF-N与TN呈极显著相关性,说明IEF-N的变化趋势与TN类似,TN含量在一定程度上可反映湖泊内源污染释放的高低.pH值、粒径对氮形态的影响较小,而C/N、磷输入、TOC均不同程度的影响着氮形态的含量及分布,尤其以P和TOC最为明显.  相似文献   

10.
研究河流沉积物氮形态的分布可以了解流域的水环境现状.本研究通过分级浸取方法得到沉积物的离子交换态氮(IEF-N)、弱酸浸取态氮(WAEF-N)、强碱浸取态氮(SAEF-N)以及强氧化剂浸取态氮(SOEF-N),对比研究了太湖西部入湖河流(东苕溪、西苕溪)和洪泽湖西部入湖河流(安河、濉河)沉积物中氮形态的空间分布特征,分析了可转换态氮的主要影响因素.结果表明,不同流域之间沉积物的基本理化性质存在明显的差异,导致沉积物总氮以及可转化态氮的含量及空间分布也不相同.总体而言,太湖西部河流沉积物中总氮和总可转化态氮的含量略高于洪泽湖西部河流,但前者的空间变化小于后者.太湖西部河流沉积物与洪泽湖西部河流沉积物的可转化态氮含量大小排列顺序也有所不同,前者为SOEF-NSAEF-NWAEF-NIEF-N,后者为SOEF-NSAEF-NIEF-NWAEF-N,且后者各形态氮的含量变化更为明显,这主要与沉积物的组成和氮来源有关.研究区沉积物中可转化态氮的分布受其理化性质的影响明显,尤以有机质和粒度的影响最明显.  相似文献   

11.
胶州湾沉积物氮的环境生物地球化学意义   总被引:6,自引:1,他引:5  
利用氮的分级浸取技术,研究了胶州湾不同粒级沉积物中氮的赋存形态.研究表明,胶州湾沉积物中可转化态氮可分为离子交换态、弱酸浸取态、强碱浸取态和强氧化剂浸取态.不同粒级沉积物中各形态氮占可转化态氮的比例各不相同.在细、中和粗粒级沉积物中,强氧化剂浸取态氮是可交换态氮的优势形态,分别占可转化氮的35.38%、44.38%和58.69%.在中、粗粒级沉积物中,强碱浸取态氮是无机氮的主要赋存形态,分别占可转化态氮的26.31%和25.85%.在细粒级沉积物中,离子交换态氮是优势态的无机氮,占可转化态氮的27.67%.相关分析表明,对于胶州湾来说,沉积物的粒度越细,氮的含量就越高,各形态氮大致与细、中粒级沉积物含量呈正相关,而与粗粒级沉积物含量呈负相关.研究还表明,不同粒级沉积物中氮与浮游植物数量、叶绿素a以及上覆水体中硝酸盐的含量大致都在一定程度上呈正相关,这一方面说明了沉积物对上覆水体元素的含量有着不可忽视的影响,另一方面也说明了沉积物中的氮对海水的富营养化水平有着较好的指示和十分重要的环境意义.  相似文献   

12.
为研究沉积物中氮形态及其质量分数对湖库水体富营养化的影响,在滇南双龙水库采集沉积柱样,分析TN、TIN(可转化态氮)、IEF-N(离子交换态氮)、WAEF-N(弱酸浸取态氮)、SAEF-N(强碱可浸取态氮)、SOEF-N(强氧化剂可浸取态氮)质量分数的剖面特征.通过Pearson相关、RDA(冗余分析)和回归分析探讨沉积物理化性质对氮迁移转化的影响,并结合TLI(综合营养状态指数)和ON(有机氮)指标评估水库氮引起的富营养化程度.结果表明:①柱芯(70 cm)的沉积年代为1871—2011年.②沉积物中w(TN)范围为0.832~5.744 mg/g,其中w(IEF-N)和w(SAEF-N)范围分别为0.027~0.142和0.033~0.131 mg/g,且随深度的增加均呈下降趋势;w(WAEF-N)和w(SOEF-N)范围分别为0.044~0.108和0.114~0.586 mg/g,且随深度的增加均波动变化.③单因子分析表明,各形态氮质量分数与粒度呈负相关,与w(TOC)呈极显著正相关(P < 0.01),pH与各形态氮(WAEF-N除外)质量分数存在极显著负相关;综合因子分析表明,各形态氮质量分数主要受w(TOC)和pH共同作用.④污染评价结果表明,沉积物中w(TN)和w(ON)较高,双龙水库长期处于中度富营养化水平.研究显示,沉积物中TIN的迁移转化和外源氮的输入会引起水库上覆水中氮质量分数的增加,进而加剧水库富营养化,需重点关注沉积物中氮的内源性释放及流域土壤侵蚀引起的氮外源输入.   相似文献   

13.
为研究白洋淀夏秋季各典型淀区沉积物中氮赋存形态及分布特征,采用逐级提取方法将沉积物中氮分为离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N),并对沉积物各形态可转化态氮与间隙水氨氮、硝氮的相关性进行分析。结果表明:夏季沉积物TN含量为3195.95~6335.34 mg/kg,秋季沉积物TN含量为3553.89~5786.3 mg/kg,原始区和养殖区的TN含量夏秋两季差异最大;夏秋两季15个采样点及5个功能区各形态氮含量均表现为WAEF-N>SOEF-N>SAEF-N>IEF-N,各形态可转化态氮含量无明显的季节变化特征;相关分析表明,沉积物中的弱酸可浸取态氨氮、硝氮与间隙水中的氨氮、硝氮在夏秋两季均相关性显著(P<0.05)。  相似文献   

14.
巢湖十五里河沉积物生物有效性氮磷分布及相关性   总被引:8,自引:0,他引:8       下载免费PDF全文
在巢湖十五里河采集15个沉积物柱样,对表层(0~10 cm)沉积物生物有效性氮、磷含量和空间分布特征及相互关系进行研究. 结果表明,十五里河表层沉积物的各形态〔IEF(离子交换态),WAEF(弱酸可提取态),SAEF(强碱可提取态)和SOEF(强氧化剂可提取态)〕生物有效性氮、磷含量存在较为明显的空间变化性. w(生物有效性氮)占w(TN)的53.4%~67.9%,且w(SOEF-N)>w(IEF-N)>w(SAEF-N)>w(WAEF-N),其中w(SOEF-N)为411.35~965.47 mg/kg,占w(TN)的33.4%~43.7%;w(生物有效性磷)占w(TP)的47.3%~89.4%,且w(SAEF-P)>w(SOEF-P)>w(WAEF-P)>w(IEF-P),其中w(SAEF-P)为311.74~960.33 mg/kg,占w(TP)的33.0%~78.0%. 不同形态生物有效性氮的相关性较差,其中w(IEF-N)与w(WAEF-N)和w(SAEF-N)呈负相关,相关系数分别为-0.042和-0.122;w(WAEF-N)和w(SAEF-N)和w(SOEF-N)的相关系数仅为0.320~0.513. 生物有效性磷的相关性相对较强,其中w(IEF-P)与w(WAEF-P)呈显著正相关,相关系数为0.527,w(WAEF-P)与w(SAEF-P)呈极显著正相关,相关系数为0.653. 不同形态生物有效性氮、磷的相关性不显著.   相似文献   

15.
洱海沉积物中不同形态氮的时空分布特征   总被引:23,自引:5,他引:18  
为揭示沉积物中氮形态变化的影响因素及其生态效应,对洱海表层沉积物中不同形态氮的空间分布和季节性变化特征进行了研究. 结果表明:洱海表层沉积物中w(TN)在2354~6174mg/kg之间,空间分布呈湖区北部>南部>中部的趋势;w(TTN) (TTN为可交换态氮)在1158~2921mg/kg之间,占w(TN)的43%,其分布趋势与w(TN)相同;各形态TTN表现为SOEF-N(强氧化剂可提取态氮,w为974~2515mg/kg)>WAEF-N(弱酸可提取态氮,w为91~210mg/kg)>SAEF-N(强碱可提取态氮,w为38~198mg/kg)>IEF-N(离子交换态氮,w为66~130mg/kg),w(WAEF-N)和w(IEF-N)的分布趋势与w(TTN)相同,w(SAEF-N)中部较高,w(SOEF-N)南部较高. 沉积物中w(TN)和w(NTN)(NTN为非转化态氮)7月较高,TTN及其各形态氮质量分数1月较高. 不同形态氮质量分数随沉积物深度的增加均呈下降趋势,NTN的富集速率高于TN. 洱海沉积物中w(TN)高于长江中下游湖泊,表层TN富集明显. 沉积物氮释放风险较大,但其w(TTN)和w(IEF-N)占w(TN)的比例低于长江中下游湖泊,即洱海沉积物氮释放量小于长江中下游湖泊;洱海沉积物中各形态氮质量分数与w(TOM)均呈显著正相关,与水深呈负相关,显示有机态氮与有机质同步沉积且受外源输入影响较大,w(IEF-N)分布同时受水生植物等影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号